def plan(self, start_row, start_col, goal_row, goal_col):
        start = ob.State(self.ss_.getStateSpace())
        start()[0] = start_row
        start()[1] = start_col
        # start().setX(start_row)
        # start().setY(start_col)

        goal = ob.State(self.ss_.getStateSpace())
        goal()[0] = goal_row
        goal()[1] = goal_col

        self.ss_.setStartAndGoalStates(start, goal)
        self.ss_.setup()

        solved = self.ss_.solve()

        if solved:
            print('Found %d solutions' %
                  self.ss_.getProblemDefinition().getSolutionCount())

            if (self.ss_.haveSolutionPath()):
                self.ss_.simplifySolution()
                p = self.ss_.getSolutionPath()
                ps = og.PathSimplifier(self.ss_.getSpaceInformation())
                ps.simplifyMax(p)
                ps.smoothBSpline(p)
                # self.ss_.getPathSimplifier().simplifyMax(p)
                # self.ss_.getPathSimplifier().smoothBSpline(p)

                return True
        return False
Exemplo n.º 2
0
 def plan(self, start_row, start_col, goal_row, goal_col):
     if not self.ss_:
         return False
     start = ob.State(self.ss_.getStateSpace())
     start()[0] = start_row
     start()[1] = start_col
     goal = ob.State(self.ss_.getStateSpace())
     goal()[0] = goal_row
     goal()[1] = goal_col
     self.ss_.setStartAndGoalStates(start, goal)
     # generate a few solutions; all will be added to the goal
     for _ in range(10):
         if self.ss_.getPlanner():
             self.ss_.getPlanner().clear()
         self.ss_.solve()
     ns = self.ss_.getProblemDefinition().getSolutionCount()
     print("Found %d solutions" % ns)
     if self.ss_.haveSolutionPath():
         self.ss_.simplifySolution()
         p = self.ss_.getSolutionPath()
         ps = og.PathSimplifier(self.ss_.getSpaceInformation())
         ps.simplifyMax(p)
         ps.smoothBSpline(p)
         return True
     return False
Exemplo n.º 3
0
    def execute(self, env, time, pathLength, show=False):
        result = True
        # instantiate space information
        si = mySpaceInformation(env)
        # instantiate problem definition
        pdef = ob.ProblemDefinition(si)
        # instantiate motion planner
        planner = self.newplanner(si)
        planner.setProblemDefinition(pdef)
        planner.setup()

        # the initial state
        state = ob.State(si)
        state()[0] = env.start[0]
        state()[1] = env.start[1]
        pdef.addStartState(state)

        goal = ob.GoalState(si)
        gstate = ob.State(si)
        gstate()[0] = env.goal[0]
        gstate()[1] = env.goal[1]
        goal.setState(gstate)
        goal.threshold = 1e-3
        pdef.setGoal(goal)

        startTime = clock()
        if planner.solve(SOLUTION_TIME):
            elapsed = clock() - startTime
            time = time + elapsed
            if show:
                print('Found solution in %f seconds!' % elapsed)

            path = pdef.getSolutionPath()
            sm = og.PathSimplifier(si)
            startTime = clock()
            sm.reduceVertices(path)
            elapsed = clock() - startTime
            time = time + elapsed
            if show:
                print('Simplified solution in %f seconds!' % elapsed)

            path.interpolate(100)
            pathLength = pathLength + path.length()
            if show:
                print(env, '\n')
                temp = copy.deepcopy(env)
                for i in range(len(path.states)):
                    x = int(path.states[i][0])
                    y = int(path.states[i][1])
                    if temp.grid[x][y] in [0, 2]:
                        temp.grid[x][y] = 2
                    else:
                        temp.grid[x][y] = 3
                print(temp, '\n')
        else:
            result = False

        return (result, time, pathLength)
Exemplo n.º 4
0
 def path_optimization(self, path, space_info):
     """
     Function of optimizing the path and splitting it into equal segments
     """
     ps = og.PathSimplifier(space_info)
     shorteningPath = ps.shortcutPath(path)
     reduceVertices = ps.reduceVertices(path)
     path.interpolate(int(path.length() * 10))
     return path
Exemplo n.º 5
0
 def path_optimization(self, path, space_info):
     """
     Function of optimizing the path and splitting it into equal segments
     """
     ps = og.PathSimplifier(space_info)
     shorteningPath = ps.shortcutPath(path)
     reduceVertices = ps.reduceVertices(path)
     path.interpolate(int(path.length() / self.planner_range))
     path = self.convert_path_to_point2d(path.getStates())
     return path
Exemplo n.º 6
0
def plan(mapfile,start_node, goal_node,runTime, plannerType, objectiveType, d, fname):

	boundary, blocks = load_map(mapfile)
	boundary[:,:3] = boundary[:,:3] +0.0005
	boundary[:,3:] = boundary[:,3:] -0.0005
	alpha = 1.05
	blocks = blocks*alpha
# Construct the robot state space in which we're planning. We're
	space = ob.RealVectorStateSpace(3)
	sbounds = ob.RealVectorBounds(3)
	sbounds.low[0] =float(boundary[0,0])
	sbounds.high[0] =float(boundary[0,3])

	sbounds.low[1] = float(boundary[0,1])
	sbounds.high[1] = float(boundary[0,4])

	sbounds.low[2] = float(boundary[0,2])
	sbounds.high[2] = float(boundary[0,5])

	space.setBounds(sbounds)
	# Construct a space information instance for this state space
	si = ob.SpaceInformation(space)

	# Set the object used to check which states in the space are valid
	validityChecker = ValidityChecker(si, boundary, blocks)
	si.setStateValidityChecker(validityChecker)

	mv = MyMotionValidator(si, boundary, blocks)
	si.setMotionValidator(mv)

	si.setup()

	# Set our robot's starting state
	start = ob.State(space)
	start[0] = start_node[0]
	start[1] = start_node[1]
	start[2] = start_node[2]
	# Set our robot's goal state 
	goal = ob.State(space)
	goal[0] = goal_node[0]
	goal[1] = goal_node[1]
	goal[2] = goal_node[2]

	# Create a problem instance
	pdef = ob.ProblemDefinition(si)

	# Set the start and goal states
	pdef.setStartAndGoalStates(start, goal)

	# Create the optimization objective specified by our command-line argument.
	# This helper function is simply a switch statement.
	pdef.setOptimizationObjective(allocateObjective(si, objectiveType))

	# Construct the optimal planner specified by our command line argument.
	# This helper function is simply a switch statement.
	optimizingPlanner = allocatePlanner(si,d, plannerType)

	# Set the problem instance for our planner to solve
	optimizingPlanner.setProblemDefinition(pdef)
	optimizingPlanner.setup()

	solved = "Approximate solution"
	# attempt to solve the planning problem in the given runtime
	t1 = tic()
	while(str(solved) == 'Approximate solution'):

		solved = optimizingPlanner.solve(runTime)
		# print(pdef.getSolutionPath().printAsMatrix())
	t2 = toc(t1)
	p = pdef.getSolutionPath()
	ps = og.PathSimplifier(si)
	ps.simplifyMax(p)

	if solved:
	 # Output the length of the path found
		print('{0} found solution of path length {1:.4f} with an optimization ' \
		 'objective value of {2:.4f}'.format( \
		 optimizingPlanner.getName(), \
		 pdef.getSolutionPath().length(), \
		 pdef.getSolutionPath().cost(pdef.getOptimizationObjective()).value()))

		# If a filename was specified, output the path as a matrix to
		# that file for visualization
	env = mapfile.split(".")[1].split("/")[-1]
	fname = fname + "{}_{}_{}_{}.txt".format(env, d,np.round(pdef.getSolutionPath().length(),2),np.round(t2,2))

	if fname:
		with open(fname, 'w') as outFile:
		 outFile.write(pdef.getSolutionPath().printAsMatrix())

	path = np.genfromtxt(fname)
	print("The found path : ")
	print(path)
	pathlength = np.sum(np.sqrt(np.sum(np.diff(path,axis=0)**2,axis=1)))
	print("pathlength : {}".format(pathlength))
	fig, ax, hb, hs, hg = draw_map(boundary, blocks, start_node, goal_node)  
	ax.plot(path[:,0],path[:,1],path[:,2],'r-')
	plt.show()