Exemplo n.º 1
0
    def test_eq(test_case):
        arr1 = np.array([
            2,
            3,
            4,
            5,
        ])
        arr2 = np.array([2, 3, 4, 1])
        input = flow.Tensor(arr1, dtype=flow.float32)
        other = flow.Tensor(arr2, dtype=flow.float32)

        of_out = flow.eq(input, other)
        of_out2 = flow.equal(input, other)
        np_out = np.equal(arr1, arr2)
        test_case.assertTrue(np.array_equal(of_out.numpy(), np_out))
        test_case.assertTrue(np.array_equal(of_out2.numpy(), np_out))
Exemplo n.º 2
0
 def test_softplus(test_case):
     m = flow.nn.Softplus()
     arr = np.random.randn(2, 3, 4, 5)
     np_out = np.where(arr > 20, arr, np.log(1.0 + np.exp(1.0 * arr)))
     x = flow.Tensor(arr)
     of_out = m(x)
     test_case.assertTrue(np.allclose(of_out.numpy(), np_out, rtol=1e-05))
Exemplo n.º 3
0
 def test_hardtanh_min_max(test_case):
     m = flow.nn.Hardtanh(min_val=-2.0, max_val=2.3)
     arr = np.random.randn(2, 3, 4, 5)
     np_out = np.maximum(-2.0, np.minimum(2.3, arr))
     x = flow.Tensor(arr)
     of_out = m(x)
     test_case.assertTrue(np.allclose(of_out.numpy(), np_out, rtol=1e-05))
Exemplo n.º 4
0
def _test_linear_backward_with_bias(test_case, device):
    linear = flow.nn.Linear(3, 8)
    linear = linear.to(device)
    x = flow.Tensor(
        [
            [-0.94630778, -0.83378579, -0.87060891],
            [2.0289922, -0.28708987, -2.18369248],
            [0.35217619, -0.67095644, -1.58943879],
            [0.08086036, -1.81075924, 1.20752494],
            [0.8901075, -0.49976737, -1.07153746],
            [-0.44872912, -1.07275683, 0.06256855],
            [-0.22556897, 0.74798368, 0.90416439],
            [0.48339456, -2.32742195, -0.59321527],
        ],
        device=flow.device(device),
        requires_grad=True,
    )
    flow.nn.init.constant_(linear.weight, 2.068758)
    flow.nn.init.constant_(linear.bias, 0.23)
    of_out = linear(x)
    of_out = of_out.sum()
    of_out.backward()

    np_grad = np.array([
        [16.5501, 16.5501, 16.5501],
        [16.5501, 16.5501, 16.5501],
        [16.5501, 16.5501, 16.5501],
        [16.5501, 16.5501, 16.5501],
        [16.5501, 16.5501, 16.5501],
        [16.5501, 16.5501, 16.5501],
        [16.5501, 16.5501, 16.5501],
        [16.5501, 16.5501, 16.5501],
    ])
    test_case.assertTrue(np.allclose(np_grad, x.grad.numpy(), 1e-4, 1e-4))
Exemplo n.º 5
0
def _test_meshgrid_forawd_scalr(test_case, device):
    input1 = flow.Tensor(
        np.array(1.0),
        dtype=flow.float32,
        device=flow.device(device),
    )
    input2 = flow.Tensor(
        np.array(2.0),
        dtype=flow.float32,
        device=flow.device(device),
    )
    np_x, np_y = np.meshgrid(input1.numpy(), input2.numpy(), indexing="ij")
    of_x, of_y = flow.meshgrid(input1, input2)

    test_case.assertTrue(np.allclose(of_x.numpy(), np_x, 1e-4, 1e-4))
    test_case.assertTrue(np.allclose(of_y.numpy(), np_y, 1e-4, 1e-4))
Exemplo n.º 6
0
def _test_where_scalar(test_case, device):
    x = 0.5
    y = 2.0
    condition = flow.Tensor(np.array([1]), dtype=flow.int32)
    of_out = flow.where(condition, x, y)
    np_out = np.array([0.5])
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5))
Exemplo n.º 7
0
def _test_repeat_new_dim_backward(test_case, device):
    input = flow.Tensor(
        np.random.randn(2, 4, 1, 3),
        dtype=flow.float32,
        device=flow.device(device),
        requires_grad=True,
    )
    sizes = (4, 3, 2, 3, 3)
    of_out = input.repeat(sizes=sizes)
    of_out = of_out.sum()
    of_out.backward()
    np_grad = [
        [
            [[216.0, 216.0, 216.0]],
            [[216.0, 216.0, 216.0]],
            [[216.0, 216.0, 216.0]],
            [[216.0, 216.0, 216.0]],
        ],
        [
            [[216.0, 216.0, 216.0]],
            [[216.0, 216.0, 216.0]],
            [[216.0, 216.0, 216.0]],
            [[216.0, 216.0, 216.0]],
        ],
    ]
    test_case.assertTrue(np.array_equal(input.grad.numpy(), np_grad))
Exemplo n.º 8
0
 def test_arcsin(test_case):
     input = flow.Tensor(np.random.random((4, 5, 6)) - 0.5,
                         dtype=flow.float32)
     of_out = input.arcsin()
     np_out = np.arcsin(input.numpy())
     test_case.assertTrue(
         np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5, equal_nan=True))
Exemplo n.º 9
0
 def _test_cast_tensor_function(test_case):
     shape = (2, 3, 4, 5)
     np_arr = np.random.randn(*shape).astype(np.float32)
     input = flow.Tensor(np_arr, dtype=flow.float32)
     output = input.cast(flow.int8)
     np_out = np_arr.astype(np.int8)
     test_case.assertTrue(np.array_equal(output.numpy(), np_out))
Exemplo n.º 10
0
    def test_add_tensor_method(test_case):
        x = flow.Tensor(np.random.randn(1, 1))
        y = flow.Tensor(np.random.randn(2, 3))
        of_out = x + y
        np_out = np.add(x.numpy(), y.numpy())
        test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4))

        x = flow.Tensor(np.random.randn(2, 3))
        of_out = x + 3
        np_out = np.add(x.numpy(), 3)
        test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4))

        x = flow.Tensor(np.random.randn(2, 3))
        of_out = 3 + x
        np_out = np.add(3, x.numpy())
        test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4))
Exemplo n.º 11
0
    def test_sub_tensor_method(test_case):
        x = flow.Tensor(np.random.randn(1, 1))
        y = flow.Tensor(np.random.randn(2, 3))
        of_out = x - y
        np_out = np.subtract(x.numpy(), y.numpy())
        test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4))

        x = flow.Tensor(np.random.randn(2, 3))
        of_out = x - 3
        np_out = np.subtract(x.numpy(), 3)
        test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4))

        x = flow.Tensor(np.random.randn(2, 3))
        of_out = 3 - x
        np_out = np.subtract(3, x.numpy())
        test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4))
Exemplo n.º 12
0
    def test_mul(test_case):
        x = flow.Tensor(np.random.randn(1, 1))
        y = flow.Tensor(np.random.randn(2, 3))
        of_out = x * y
        np_out = np.multiply(x.numpy(), y.numpy())
        test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4))

        x = flow.Tensor(np.random.randn(2, 3))
        of_out = x * 3
        np_out = np.multiply(x.numpy(), 3)
        test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4))

        x = flow.Tensor(np.random.randn(2, 3))
        of_out = 3 * x
        np_out = np.multiply(3, x.numpy())
        test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4))
Exemplo n.º 13
0
 def test_numpy_and_default_dtype(test_case):
     shape = (2, 3, 4, 5)
     tensor = flow.Tensor(*shape)
     flow.nn.init.ones_(tensor)
     test_case.assertTrue(tensor.dtype == flow.float32)
     test_case.assertTrue(
         np.array_equal(tensor.numpy(), np.ones(shape, dtype=np.float32)))
Exemplo n.º 14
0
 def test_creating_consistent_tensor(test_case):
     shape = (2, 3)
     x = flow.Tensor(*shape, placement=flow.placement("gpu", ["0:0"], None))
     x.set_placement(flow.placement("cpu", ["0:0"], None))
     x.set_is_consistent(True)
     test_case.assertTrue(not x.is_cuda)
     x.determine()
Exemplo n.º 15
0
 def test_layernorm_v3(test_case):
     input_arr = np.array(
         [
             [
                 [[-0.16046895, -1.03667831], [-0.34974465, 0.26505867]],
                 [[-1.24111986, -0.53806001], [1.72426331, 0.43572459]],
             ],
             [
                 [[-0.77390957, -0.42610624], [0.16398858, -1.35760343]],
                 [[1.07541728, 0.11008703], [0.26361224, -0.48663723]],
             ],
         ],
         dtype=np.float32,
     )
     output = np.array(
         [
             [
                 [[0.9999740, -0.9999740], [-0.9999470, 0.9999470]],
                 [[-0.9999595, 0.9999595], [0.9999880, -0.9999880]],
             ],
             [
                 [[-0.9998344, 0.9998341], [0.9999914, -0.9999914]],
                 [[0.9999787, -0.9999787], [0.9999645, -0.9999645]],
             ],
         ],
         dtype=np.float32,
     )
     x = flow.Tensor(input_arr)
     m = flow.nn.LayerNorm(2, elementwise_affine=True)
     y = m(x)
     test_case.assertTrue(np.allclose(y.numpy(), output))
Exemplo n.º 16
0
 def test_sqrt_tensor_function(test_case):
     input_arr = np.random.randn(1, 6, 3, 8)
     np_out = np.sqrt(input_arr)
     x = flow.Tensor(input_arr)
     of_out = x.sqrt()
     test_case.assertTrue(
         np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5, equal_nan=True))
Exemplo n.º 17
0
def _test_expand_backward_same_dim(test_case, device):
    input_shape = (2, 4, 1, 1)
    expand_dim = [2, 4, 2, 1]
    input = np.array([
        [
            [[0.9876952171325684]],
            [[0.8772538304328918]],
            [[0.9200366735458374]],
            [[0.2810221314430237]],
        ],
        [
            [[0.3037724494934082]],
            [[0.7783719897270203]],
            [[0.08884672075510025]],
            [[0.17156553268432617]],
        ],
    ])
    of_input = flow.Tensor(input,
                           dtype=flow.float32,
                           device=flow.device(device),
                           requires_grad=True)
    of_out = of_input.expand(2, 4, 2, 1)
    y = of_out.sum().backward()
    np_grad = [
        [[[2.0]], [[2.0]], [[2.0]], [[2.0]]],
        [[[2.0]], [[2.0]], [[2.0]], [[2.0]]],
    ]
    test_case.assertTrue(np.array_equal(of_input.grad.numpy(), np_grad))
Exemplo n.º 18
0
 def test_rsqrt_tensor_function(test_case):
     np_arr = np.random.randn(3, 2, 5, 7)
     np_out = 1 / np.sqrt(np_arr)
     x = flow.Tensor(np_arr)
     of_out = flow.rsqrt(input=x)
     test_case.assertTrue(
         np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5, equal_nan=True))
Exemplo n.º 19
0
    def test_nllloss_mean(test_case):
        x = np.array([
            [0.88103855, 0.9908683, 0.6226845],
            [0.53331435, 0.07999352, 0.8549948],
            [0.25879037, 0.39530203, 0.698465],
            [0.73427284, 0.63575995, 0.18827209],
            [0.05689114, 0.0862954, 0.6325046],
        ]).astype(np.float32)
        y = np.array([0, 2, 1, 1, 0]).astype(np.int)
        input = flow.Tensor(x, dtype=flow.float32)

        target = flow.Tensor(y, dtype=flow.int64)
        nll_loss = flow.nn.NLLLoss(reduction="mean")
        of_out = nll_loss(input, target)
        np_out = nll_loss_1d(input.numpy(), target.numpy(), reduction="mean")
        test_case.assertTrue(np.allclose(of_out.numpy(), np_out))
Exemplo n.º 20
0
 def test_square_tensor_function(test_case):
     np_arr = np.random.randn(2, 7, 7, 3)
     np_out = np.square(np_arr)
     x = flow.Tensor(np_arr)
     of_out = x.square()
     test_case.assertTrue(
         np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5, equal_nan=True))
Exemplo n.º 21
0
def _test_softplus(test_case, device):
    m = flow.nn.Softplus()
    arr = np.random.randn(2, 3, 4, 5)
    np_out = np.where(arr > 20, arr, np.log(1.0 + np.exp(1.0 * arr)))
    x = flow.Tensor(arr, device=flow.device(device))
    of_out = m(x)
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5))
Exemplo n.º 22
0
 def train_one_iter(grad):
     grad_tensor = flow.Tensor(grad, requires_grad=False)
     loss = x * grad_tensor
     loss = flow.sum(x * grad_tensor)
     loss.backward()
     adam.step()
     adam.zero_grad()
Exemplo n.º 23
0
def _test_linear_with_bias(test_case, device):
    linear = flow.nn.Linear(3, 8)
    linear = linear.to(device)
    input_arr = np.array(
        [
            [-0.94630778, -0.83378579, -0.87060891],
            [2.0289922, -0.28708987, -2.18369248],
            [0.35217619, -0.67095644, -1.58943879],
            [0.08086036, -1.81075924, 1.20752494],
            [0.8901075, -0.49976737, -1.07153746],
            [-0.44872912, -1.07275683, 0.06256855],
            [-0.22556897, 0.74798368, 0.90416439],
            [0.48339456, -2.32742195, -0.59321527],
        ],
        dtype=np.float32,
    )
    np_weight = np.ones((3, 8)).astype(np.float32)
    np_weight.fill(2.068758)
    np_bias = np.ones((8))
    np_bias.fill(0.23)
    x = flow.Tensor(input_arr, device=flow.device(device))
    flow.nn.init.constant_(linear.weight, 2.068758)
    flow.nn.init.constant_(linear.bias, 0.23)
    of_out = linear(x)
    np_out = np.matmul(input_arr, np_weight)
    np_out += np_bias
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5))
Exemplo n.º 24
0
    def train_by_oneflow():
        x = Parameter(flow.Tensor(init_value, device=flow.device(device)))
        adam = flow.optim.Adam(
            [
                {
                    "params": [x],
                    "lr": learning_rate,
                    "betas": betas,
                    "eps": eps,
                    "weight_decay": weight_decay,
                    "scale": scale,
                }
            ]
        )

        def train_one_iter(grad):
            grad_tensor = flow.Tensor(
                grad, requires_grad=False, device=flow.device(device)
            )
            loss = flow.sum(x * grad_tensor)
            loss.backward()
            adam.step()
            adam.zero_grad()

        for i in range(train_iters):
            train_one_iter(random_grad_seq[i])
        return x
Exemplo n.º 25
0
 def test_logsigmoid(test_case):
     m = flow.nn.LogSigmoid()
     arr = np.random.randn(2, 3, 4, 5)
     np_out = np.log(1.0 / (1.0 + np.exp(-arr)))
     x = flow.Tensor(arr)
     of_out = m(x)
     test_case.assertTrue(np.allclose(of_out.numpy(), np_out, rtol=1e-05))
Exemplo n.º 26
0
    def test_layernorm(test_case):
        input_arr = np.array(
            [
                [
                    [[-0.16046895, -1.03667831], [-0.34974465, 0.26505867]],
                    [[-1.24111986, -0.53806001], [1.72426331, 0.43572459]],
                ],
                [
                    [[-0.77390957, -0.42610624], [0.16398858, -1.35760343]],
                    [[1.07541728, 0.11008703], [0.26361224, -0.48663723]],
                ],
            ],
            dtype=np.float32,
        )
        output = np.array(
            [
                [
                    [[-0.0544118, -1.0509688], [-0.2696846, 0.4295622]],
                    [[-1.2834904, -0.4838651], [2.0891891, 0.6236691]],
                ],
                [
                    [[-0.8555527, -0.3554582], [0.4930190, -1.6948260]],
                    [[1.8035311, 0.4155158], [0.6362644, -0.4424936]],
                ],
            ],
            dtype=np.float32,
        )

        x = flow.Tensor(input_arr)
        m = flow.nn.LayerNorm(x.size()[1:])
        y = m(x)
        test_case.assertTrue(np.allclose(y.numpy(), output))
Exemplo n.º 27
0
 def test_hardtanh(test_case):
     m = flow.nn.Hardtanh()
     arr = np.random.randn(2, 3, 4, 5)
     np_out = np.maximum(-1, np.minimum(1, arr))
     x = flow.Tensor(arr)
     of_out = m(x)
     test_case.assertTrue(np.allclose(of_out.numpy(), np_out, rtol=1e-05))
Exemplo n.º 28
0
 def test_layernorm_v2(test_case):
     input_arr = np.array(
         [
             [
                 [[-0.16046895, -1.03667831], [-0.34974465, 0.26505867]],
                 [[-1.24111986, -0.53806001], [1.72426331, 0.43572459]],
             ],
             [
                 [[-0.77390957, -0.42610624], [0.16398858, -1.35760343]],
                 [[1.07541728, 0.11008703], [0.26361224, -0.48663723]],
             ],
         ],
         dtype=np.float32,
     )
     output = np.array(
         [
             [
                 [[0.3406544, -1.5249983], [-0.0623574, 1.2467014]],
                 [[-1.2004623, -0.5688803], [1.4634399, 0.3059027]],
             ],
             [
                 [[-0.3180245, 0.3122248], [1.3815271, -1.3757277]],
                 [[1.4972910, -0.2341234], [0.0412391, -1.3044068]],
             ],
         ],
         dtype=np.float32,
     )
     x = flow.Tensor(input_arr)
     m = flow.nn.LayerNorm([2, 2], eps=1e-5)
     y = m(x)
     test_case.assertTrue(np.allclose(y.numpy(), output))
Exemplo n.º 29
0
    def _test_body_tanh_v3(test_case, input_arr):
        x = flow.Tensor(input_arr)

        y = x.tanh()
        z = np.tanh(input_arr)

        test_case.assertTrue(np.allclose(y.numpy(), z, rtol=1e-4, atol=1e-4))
Exemplo n.º 30
0
def _test_eq_float(test_case, shape, device):
    arr = np.random.randn(*shape)
    input = flow.Tensor(arr, dtype=flow.float32, device=flow.device(device))
    num = 1
    of_out = flow.eq(input, num)
    np_out = np.equal(arr, num)
    test_case.assertTrue(np.array_equal(of_out.numpy(), np_out))