Exemplo n.º 1
0
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
        super(ResidualLayer, self).__init__()

        self.conv1d_layer = nn.Sequential(
            nn.Conv1d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=1,
                padding=padding,
            ),
            nn.InstanceNorm1d(num_features=out_channels, affine=True),
        )

        self.conv_layer_gates = nn.Sequential(
            nn.Conv1d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=1,
                padding=padding,
            ),
            nn.InstanceNorm1d(num_features=out_channels, affine=True),
        )

        self.conv1d_out_layer = nn.Sequential(
            nn.Conv1d(
                in_channels=out_channels,
                out_channels=in_channels,
                kernel_size=kernel_size,
                stride=1,
                padding=padding,
            ),
            nn.InstanceNorm1d(num_features=in_channels, affine=True),
        )
Exemplo n.º 2
0
 def __init__(
     self,
     c_in,
     c_cond,
     c_h,
     c_out,
     kernel_size,
     n_conv_blocks,
     upsample,
     act,
     sn,
     dropout_rate,
 ):
     super(Decoder, self).__init__()
     self.n_conv_blocks = n_conv_blocks
     self.upsample = upsample
     self.act = get_act(act)
     f = lambda x: x
     self.in_conv_layer = f(nn.Conv1d(c_in, c_h, kernel_size=1))
     self.first_conv_layers = nn.ModuleList([
         f(nn.Conv1d(c_h, c_h, kernel_size=kernel_size))
         for _ in range(n_conv_blocks)
     ])
     self.second_conv_layers = nn.ModuleList([
         f(nn.Conv1d(c_h, c_h * up, kernel_size=kernel_size))
         for _, up in zip(range(n_conv_blocks), self.upsample)
     ])
     self.norm_layer = nn.InstanceNorm1d(c_h, affine=False)
     self.conv_affine_layers = nn.ModuleList(
         [f(nn.Linear(c_cond, c_h * 2)) for _ in range(n_conv_blocks * 2)])
     self.out_conv_layer = f(nn.Conv1d(c_h, c_out, kernel_size=1))
     self.dropout_layer = nn.Dropout(p=dropout_rate)
Exemplo n.º 3
0
    def downsample(self, in_channels, out_channels, kernel_size, stride, padding):
        self.ConvLayer = nn.Sequential(
            nn.Conv1d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
            ),
            nn.InstanceNorm1d(num_features=out_channels, affine=True),
            GLU(),
        )

        return self.ConvLayer
Exemplo n.º 4
0
 def __init__(
     self,
     c_in,
     c_h,
     c_out,
     kernel_size,
     bank_size,
     bank_scale,
     c_bank,
     n_conv_blocks,
     subsample,
     act,
     dropout_rate,
 ):
     super(ContentEncoder, self).__init__()
     self.n_conv_blocks = n_conv_blocks
     self.subsample = subsample
     self.act = get_act(act)
     self.conv_bank = nn.ModuleList([
         nn.Conv1d(c_in, c_bank, kernel_size=k)
         for k in range(bank_scale, bank_size + 1, bank_scale)
     ])
     in_channels = c_bank * (bank_size // bank_scale) + c_in
     self.in_conv_layer = nn.Conv1d(in_channels, c_h, kernel_size=1)
     self.first_conv_layers = nn.ModuleList([
         nn.Conv1d(c_h, c_h, kernel_size=kernel_size)
         for _ in range(n_conv_blocks)
     ])
     self.second_conv_layers = nn.ModuleList([
         nn.Conv1d(c_h, c_h, kernel_size=kernel_size, stride=sub)
         for sub, _ in zip(subsample, range(n_conv_blocks))
     ])
     self.norm_layer = nn.InstanceNorm1d(c_h, affine=False)
     self.mean_layer = nn.Conv1d(c_h, c_out, kernel_size=1)
     self.std_layer = nn.Conv1d(c_h, c_out, kernel_size=1)
     self.dropout_layer = nn.Dropout(p=dropout_rate)
Exemplo n.º 5
0
    def __init__(self):
        super(Generator, self).__init__()

        # 2D Conv Layer
        self.conv1 = nn.Conv2d(
            in_channels=1,
            out_channels=128,
            kernel_size=(5, 15),
            stride=(1, 1),
            padding=(2, 7),
        )

        self.conv1_gates = nn.Conv2d(
            in_channels=1,
            out_channels=128,
            kernel_size=(5, 15),
            stride=1,
            padding=(2, 7),
        )

        # 2D Downsample Layer
        self.downSample1 = downSample_Generator(in_channels=128,
                                                out_channels=256,
                                                kernel_size=5,
                                                stride=2,
                                                padding=2)

        self.downSample2 = downSample_Generator(in_channels=256,
                                                out_channels=256,
                                                kernel_size=5,
                                                stride=2,
                                                padding=2)

        # 2D -> 1D Conv
        self.conv2dto1dLayer = nn.Sequential(
            nn.Conv1d(in_channels=2304,
                      out_channels=256,
                      kernel_size=1,
                      stride=1,
                      padding=0),
            nn.InstanceNorm1d(num_features=256, affine=True),
        )

        # Residual Blocks
        self.residualLayer1 = ResidualLayer(in_channels=256,
                                            out_channels=512,
                                            kernel_size=3,
                                            stride=1,
                                            padding=1)
        self.residualLayer2 = ResidualLayer(in_channels=256,
                                            out_channels=512,
                                            kernel_size=3,
                                            stride=1,
                                            padding=1)
        self.residualLayer3 = ResidualLayer(in_channels=256,
                                            out_channels=512,
                                            kernel_size=3,
                                            stride=1,
                                            padding=1)
        self.residualLayer4 = ResidualLayer(in_channels=256,
                                            out_channels=512,
                                            kernel_size=3,
                                            stride=1,
                                            padding=1)
        self.residualLayer5 = ResidualLayer(in_channels=256,
                                            out_channels=512,
                                            kernel_size=3,
                                            stride=1,
                                            padding=1)
        self.residualLayer6 = ResidualLayer(in_channels=256,
                                            out_channels=512,
                                            kernel_size=3,
                                            stride=1,
                                            padding=1)

        # 1D -> 2D Conv
        self.conv1dto2dLayer = nn.Sequential(
            nn.Conv1d(in_channels=256,
                      out_channels=2304,
                      kernel_size=1,
                      stride=1,
                      padding=0),
            nn.InstanceNorm1d(num_features=2304, affine=True),
        )

        # UpSample Layer
        self.upSample1 = self.upSample(in_channels=256,
                                       out_channels=1024,
                                       kernel_size=5,
                                       stride=1,
                                       padding=2)

        self.upSample2 = self.upSample(in_channels=256,
                                       out_channels=512,
                                       kernel_size=5,
                                       stride=1,
                                       padding=2)

        self.lastConvLayer = nn.Conv2d(
            in_channels=128,
            out_channels=1,
            kernel_size=(5, 15),
            stride=(1, 1),
            padding=(2, 7),
        )
Exemplo n.º 6
0
    def __init__(self, input_shape=(80, 64), residual_in_channels=256):
        super(Generator, self).__init__()
        Cx, Tx = input_shape
        self.flattened_channels = (Cx // 4) * residual_in_channels

        # 2D Conv Layer
        self.conv1 = nn.Conv2d(
            in_channels=2,
            out_channels=residual_in_channels // 2,
            kernel_size=(5, 15),
            stride=(1, 1),
            padding=(2, 7),
        )

        self.conv1_gates = nn.Conv2d(
            in_channels=2,
            out_channels=residual_in_channels // 2,
            kernel_size=(5, 15),
            stride=1,
            padding=(2, 7),
        )

        # 2D Downsampling Layers
        self.downSample1 = DownSampleGenerator(
            in_channels=residual_in_channels // 2,
            out_channels=residual_in_channels,
            kernel_size=5,
            stride=2,
            padding=2,
        )

        self.downSample2 = DownSampleGenerator(
            in_channels=residual_in_channels,
            out_channels=residual_in_channels,
            kernel_size=5,
            stride=2,
            padding=2,
        )

        # 2D -> 1D Conv
        self.conv2dto1dLayer = nn.Conv1d(
            in_channels=self.flattened_channels,
            out_channels=residual_in_channels,
            kernel_size=1,
            stride=1,
            padding=0,
        )
        self.conv2dto1dLayer_tfan = nn.InstanceNorm1d(
            num_features=residual_in_channels, affine=True
        )

        # Residual Blocks
        self.residualLayer1 = ResidualLayer(
            in_channels=residual_in_channels,
            out_channels=residual_in_channels * 2,
            kernel_size=3,
            stride=1,
            padding=1,
        )
        self.residualLayer2 = ResidualLayer(
            in_channels=residual_in_channels,
            out_channels=residual_in_channels * 2,
            kernel_size=3,
            stride=1,
            padding=1,
        )
        self.residualLayer3 = ResidualLayer(
            in_channels=residual_in_channels,
            out_channels=residual_in_channels * 2,
            kernel_size=3,
            stride=1,
            padding=1,
        )
        self.residualLayer4 = ResidualLayer(
            in_channels=residual_in_channels,
            out_channels=residual_in_channels * 2,
            kernel_size=3,
            stride=1,
            padding=1,
        )
        self.residualLayer5 = ResidualLayer(
            in_channels=residual_in_channels,
            out_channels=residual_in_channels * 2,
            kernel_size=3,
            stride=1,
            padding=1,
        )
        self.residualLayer6 = ResidualLayer(
            in_channels=residual_in_channels,
            out_channels=residual_in_channels * 2,
            kernel_size=3,
            stride=1,
            padding=1,
        )

        # 1D -> 2D Conv
        self.conv1dto2dLayer = nn.Conv1d(
            in_channels=residual_in_channels,
            out_channels=self.flattened_channels,
            kernel_size=1,
            stride=1,
            padding=0,
        )
        self.conv1dto2dLayer_tfan = nn.InstanceNorm1d(
            num_features=self.flattened_channels, affine=True
        )

        # UpSampling Layers
        self.upSample1 = self.upsample(
            in_channels=residual_in_channels,
            out_channels=residual_in_channels * 4,
            kernel_size=5,
            stride=1,
            padding=2,
        )

        self.glu = GLU()

        self.upSample2 = self.upsample(
            in_channels=residual_in_channels,
            out_channels=residual_in_channels * 2,
            kernel_size=5,
            stride=1,
            padding=2,
        )

        # 2D Conv Layer
        self.lastConvLayer = nn.Conv2d(
            in_channels=residual_in_channels // 2,
            out_channels=1,
            kernel_size=(5, 15),
            stride=(1, 1),
            padding=(2, 7),
        )