Exemplo n.º 1
0
def init_by_initializer_conf(
    var_blob: EagerBlobTrait,
    initializer_conf: initializer_conf_util.InitializerConf,
    sync_between_multi_machine: bool,
    random_seed=0,
):
    initializer = initializer_util.GetInitializer(initializer_conf,
                                                  random_seed, var_blob.shape)
    # initializer is None if and only if the initializer_conf is empty_initializer
    if initializer is None:
        return

    def GenerateValueAndAssign(var_blob, start_nd_idx, stop_nd_idx):
        np_dtype = np.dtype(
            dtype_util.convert_oneflow_dtype_to_numpy_dtype(var_blob.dtype))
        length = _ElemCnt(np.array(stop_nd_idx) - np.array(start_nd_idx))
        vals = (np.array(initializer(length)).astype(np_dtype).reshape(
            np.array(stop_nd_idx) - np.array(start_nd_idx)))

        slice_value_blob = _GetCpu0VariableBlobFromNumpy(vals, var_blob.dtype)
        _LogicalSliceAssign(
            var_blob,
            slice_value_blob,
            start_nd_idx,
            stop_nd_idx,
        )

    # we just want to run f on every slice without caring about the return value
    for _ in _ForEachSlice(var_blob, GenerateValueAndAssign):
        pass

    if sync_between_multi_machine:
        oneflow_api.eager.Sync()
Exemplo n.º 2
0
def _init_eager_local_tensor_by_initializer_conf(eager_local_tensor,
                                                 initializer_conf,
                                                 random_seed=0):
    shape = tuple(eager_local_tensor.shape)
    initializer = initializer_util.GetInitializer(initializer_conf,
                                                  random_seed, shape)
    # initializer is None if and only if the initializer_conf is empty_initializer
    if initializer is None:
        return

    _copy_from_numpy_to_eager_local_tensor(
        eager_local_tensor,
        check_point_v2.generate_values_by_initializer(
            initializer, shape, eager_local_tensor.dtype),
    )
Exemplo n.º 3
0
def Init() -> None:
    oneflow.sync_default_session()

    sess = session_ctx.GetDefaultSession()
    for op_name, var_blob in GetAllVariables().items():
        var_conf = sess.OpAttribute4InterfaceOpName(
            op_name).op_conf.variable_conf
        if not (var_conf.HasField("initializer")
                or var_conf.HasField("initialize_with_snapshot")):
            continue
        if var_conf.HasField("initialize_with_snapshot"):
            initialize_with_snapshot_conf = var_conf.initialize_with_snapshot
            if initialize_with_snapshot_conf.HasField("key"):
                snapshot_key = op_name
            else:
                snapshot_key = initialize_with_snapshot_conf.key
            var_dir = os.path.dirname(
                os.path.join(
                    initialize_with_snapshot_conf.path,
                    snapshot_key,
                ))
            LoadVariables({op_name: GetCheckpoint(var_dir)})
            continue
        g = initializer_util.GetInitializer(var_conf.initializer,
                                            var_conf.random_seed,
                                            var_blob.shape)

        def GenerateValueAndAssign(var_blob, start_nd_idx, stop_nd_idx):
            np_dtype = np.dtype(
                dtype_util.convert_oneflow_dtype_to_numpy_dtype(
                    var_blob.dtype))
            length = _ElemCnt(np.array(stop_nd_idx) - np.array(start_nd_idx))
            vals = (np.array(g(length)).astype(np_dtype).reshape(
                np.array(stop_nd_idx) - np.array(start_nd_idx)))

            slice_value_blob = _GetCpu0VariableBlobFromNumpy(
                vals, var_blob.dtype)
            _LogicalSliceAssign(
                var_blob,
                slice_value_blob,
                start_nd_idx,
                stop_nd_idx,
            )

        # we just want to run f on every slice without caring about the return value
        for _ in _ForEachSlice(var_blob, GenerateValueAndAssign):
            pass
    oneflow_api.eager.Sync()
Exemplo n.º 4
0
def init_by_initializer_conf(
    var_blob: Union[EagerBlobTrait, "oneflow.Tensor"],
    initializer_conf: initializer_conf_util.InitializerConf,
    sync_between_multi_machine: bool,
    scope_symbol_id: Optional[int],
    random_seed: int = 0,
):
    initializer = initializer_util.GetInitializer(initializer_conf,
                                                  random_seed, var_blob.shape)
    # initializer is None if and only if the initializer_conf is empty_initializer
    if initializer is None:
        return

    def GenerateValueAndAssign(var_blob, start_nd_idx, stop_nd_idx):
        np_dtype = np.dtype(
            dtype_util.convert_oneflow_dtype_to_numpy_dtype(var_blob.dtype))
        length = _ElemCnt(np.array(stop_nd_idx) - np.array(start_nd_idx))
        vals = (np.array(initializer(length)).astype(np_dtype).reshape(
            np.array(stop_nd_idx) - np.array(start_nd_idx)))

        if isinstance(var_blob, oneflow.Tensor):
            var_blob_object = var_blob._blob_object
        else:
            assert isinstance(var_blob, EagerBlobTrait)
            var_blob_object = var_blob.blob_object

        slice_value_blob = _GetCpu0VariableBlobFromNumpy(vals, var_blob.dtype)
        _LogicalSliceAssign(
            var_blob_object,
            slice_value_blob.blob_object,
            start_nd_idx,
            stop_nd_idx,
            scope_symbol_id,
        )

    # we just want to run f on every slice without caring about the return value
    for _ in _ForEachSlice(var_blob, GenerateValueAndAssign):
        pass

    if sync_between_multi_machine:
        oneflow_api.eager.single_client.Sync()
Exemplo n.º 5
0
def init_by_initializer_conf(
    var_blob: Union[EagerBlobTrait, "oneflow.Tensor"],
    initializer_conf: initializer_conf_util.InitializerConf,
    sync_between_multi_machine: bool,
    scope_symbol_id: Optional[int],
    random_seed: int = 0,
):
    initializer = initializer_util.GetInitializer(initializer_conf,
                                                  random_seed, var_blob.shape)
    # initializer is None if and only if the initializer_conf is empty_initializer
    if initializer is None:
        return

    def GenerateValueAndAssign(var_blob, start_nd_idx, stop_nd_idx):
        shape = np.array(stop_nd_idx) - np.array(start_nd_idx)
        vals = generate_values_by_initializer(initializer, shape,
                                              var_blob.dtype)

        if isinstance(var_blob, oneflow.Tensor):
            raise ValueError("Tensor object arguments are not supported")
        else:
            assert isinstance(var_blob, EagerBlobTrait)
            var_blob_object = var_blob.blob_object

        slice_value_blob = _GetCpu0VariableBlobFromNumpy(vals, var_blob.dtype)
        _LogicalSliceAssign(
            var_blob_object,
            slice_value_blob.blob_object,
            start_nd_idx,
            stop_nd_idx,
            scope_symbol_id,
        )

    # we just want to run f on every slice without caring about the return value
    for _ in _ForEachSlice(var_blob, GenerateValueAndAssign):
        pass

    if sync_between_multi_machine:
        oneflow._oneflow_internal.eager.single_client.Sync()