Exemplo n.º 1
0
 def __init__(self, model):
     self.name_list = dict()
     self.parameters = []
     self.constants = []
     namedlink = {n: l for n, l in model.namedlinks()}
     self.param_to_link = {}
     for name, param in model.namedparams():
         owned_link_name = name[:name.rindex('/')]
         if owned_link_name in namedlink:
             onnx_owned_link_name = onnx_helper.cleanse_param_name(
                 owned_link_name)
             self.param_to_link[id(param)] = (onnx_owned_link_name,
                                              namedlink[owned_link_name])
         onnx_name = onnx_helper.cleanse_param_name(name)
         self.set_name(param, onnx_name)
Exemplo n.º 2
0
def export_testcase(model, args, out_dir, output_grad=False, **kwargs):
    """Export model and I/O tensors of the model in protobuf format.

    Similar to the `export` function, this function first performs a forward
    computation to a given input for obtaining an output. Then, this function
    saves the pair of input and output in Protobuf format, which is a
    defacto-standard format in ONNX.

    This function also saves the model with the name "model.onnx".

    Args:
        model (~chainer.Chain): The model object.
        args (list): The arguments which are given to the model
            directly. Unlike `export` function, only `list` type is accepted.
        out_dir (str): The directory name used for saving the input and output.
        output_grad (bool): If True, this function will output model's
            gradient with names 'gradient_%d.pb'.
        **kwargs (dict): keyword arguments for ``onnx_chainer.export``.
    """
    os.makedirs(out_dir, exist_ok=True)
    model.cleargrads()
    onnx_model, inputs, outputs = export(
        model, args, filename=os.path.join(out_dir, 'model.onnx'),
        return_named_inout=True, **kwargs)

    test_data_dir = os.path.join(out_dir, 'test_data_set_0')
    os.makedirs(test_data_dir, exist_ok=True)
    for i, (name, var) in enumerate(inputs.items()):
        pb_name = os.path.join(test_data_dir, 'input_{}.pb'.format(i))
        array = chainer.cuda.to_cpu(var.array)
        write_tensor_pb(pb_name, name, array)

    for i, (name, var) in enumerate(outputs.items()):
        pb_name = os.path.join(test_data_dir, 'output_{}.pb'.format(i))
        array = chainer.cuda.to_cpu(var.array)
        write_tensor_pb(pb_name, name, array)

    if output_grad:
        # Perform backward computation
        if len(outputs) > 1:
            outputs = chainer.functions.identity(*outputs)
        for out in outputs.values():
            out.grad = model.xp.ones_like(out.array)
        list(outputs.values())[0].backward()

        for i, (name, param) in enumerate(model.namedparams()):
            pb_name = os.path.join(test_data_dir, 'gradient_{}.pb'.format(i))
            grad = chainer.cuda.to_cpu(param.grad)
            onnx_name = cleanse_param_name(name)
            if grad is None:
                warnings.warn(
                    'Parameter `{}` does not have gradient value'.format(name))
            else:
                write_tensor_pb(pb_name, onnx_name, grad)
Exemplo n.º 3
0
    def add_param(self, array, name, use_original_name=False):
        """Add a parameter array as an ONNX initializer.

        Returns:
            str: registered name.
        """
        if use_original_name:
            onnx_name = name
        else:
            if not (name.startswith('/') or name.startswith('_')):
                name = '/' + name
            onnx_name = '{}_{}'.format(onnx_helper.get_func_name(),
                                       onnx_helper.cleanse_param_name(name))
        self.set_name(array, onnx_name)
        self.parameters.append(array)
        return onnx_name