Exemplo n.º 1
0
def sx_operator(n_spatial_orbitals: int) -> FermionOperator:
    r"""Return the sx operator.

    $$
        \begin{align}
        S^{x} = \frac{1}{2}\sum_{i = 1}^{n}(S^{+} + S^{-})
        \end{align}
    $$

    Args:
        n_spatial_orbitals: number of spatial orbitals (n_qubits // 2).

    Returns:
        operator (FermionOperator): corresponding to the sx operator over
        n_spatial_orbitals.

    Note:
        The indexing convention used is that even indices correspond to
        spin-up (alpha) modes and odd indices correspond to spin-down (beta)
        modes.
    """
    if not isinstance(n_spatial_orbitals, int):
        raise TypeError("n_orbitals must be specified as an integer")

    operator = FermionOperator()
    for ni in range(n_spatial_orbitals):
        operator += FermionOperator(((up_index(ni), 1), (down_index(ni), 0)),
                                    .5)
        operator += FermionOperator(((down_index(ni), 1), (up_index(ni), 0)),
                                    .5)

    return operator
Exemplo n.º 2
0
def sz_operator(n_spatial_orbitals: int) -> FermionOperator:
    r"""Return the sz operator.

    $$
        \begin{align}
        S^{z} = \frac{1}{2}\sum_{i = 1}^{n}(n_{i, \alpha} - n_{i, \beta})
        \end{align}
    $$

    Args:
        n_spatial_orbitals: number of spatial orbitals (n_qubits // 2).

    Returns:
        operator (FermionOperator): corresponding to the sz operator over
        n_spatial_orbitals.

    Note:
        The indexing convention used is that even indices correspond to
        spin-up (alpha) modes and odd indices correspond to spin-down (beta)
        modes.
    """
    if not isinstance(n_spatial_orbitals, int):
        raise TypeError("n_orbitals must be specified as an integer")

    operator = FermionOperator()
    n_spinless_orbitals = 2 * n_spatial_orbitals
    for ni in range(n_spatial_orbitals):
        operator += (
            number_operator(n_spinless_orbitals, up_index(ni), 0.5) +
            number_operator(n_spinless_orbitals, down_index(ni), -0.5))

    return operator
Exemplo n.º 3
0
def s_minus_operator(n_spatial_orbitals: int) -> FermionOperator:
    r"""Return the s+ operator.

    .. math::
        \begin{align}
        S^{-} = \sum_{i=1}^{n} a_{i, \beta}^{\dagger}a_{i, \alpha}
        \end{align}

    Args:
        n_spatial_orbitals: number of spatial orbitals (n_qubits + 1 // 2).

    Returns:
        operator (FermionOperator): corresponding to the s- operator over
        n_spatial_orbitals.

    Note:
        The indexing convention used is that even indices correspond to
        spin-up (alpha) modes and odd indices correspond to spin-down (beta)
        modes.
    """
    if not isinstance(n_spatial_orbitals, int):
        raise TypeError("n_orbitals must be specified as an integer")

    operator = FermionOperator()
    for ni in range(n_spatial_orbitals):
        operator += FermionOperator(((down_index(ni), 1), (up_index(ni), 0)))

    return operator
Exemplo n.º 4
0
def _spinful_fermi_hubbard_model(x_dimension, y_dimension, tunneling, coulomb,
                                 chemical_potential, magnetic_field, periodic,
                                 particle_hole_symmetry):

    # Initialize operator.
    n_sites = x_dimension * y_dimension
    n_spin_orbitals = 2 * n_sites
    hubbard_model = FermionOperator()

    # Loop through sites and add terms.
    for site in range(n_sites):

        # Get indices of right and bottom neighbors
        right_neighbor = _right_neighbor(site, x_dimension, y_dimension,
                                         periodic)
        bottom_neighbor = _bottom_neighbor(site, x_dimension, y_dimension,
                                           periodic)

        # Avoid double-counting edges when one of the dimensions is 2
        # and the system is periodic
        if x_dimension == 2 and periodic and site % 2 == 1:
            right_neighbor = None
        if y_dimension == 2 and periodic and site >= x_dimension:
            bottom_neighbor = None

        # Add hopping terms with neighbors to the right and bottom.
        if right_neighbor is not None:
            hubbard_model += _hopping_term(up_index(site),
                                           up_index(right_neighbor),
                                           -tunneling)
            hubbard_model += _hopping_term(down_index(site),
                                           down_index(right_neighbor),
                                           -tunneling)
        if bottom_neighbor is not None:
            hubbard_model += _hopping_term(up_index(site),
                                           up_index(bottom_neighbor),
                                           -tunneling)
            hubbard_model += _hopping_term(down_index(site),
                                           down_index(bottom_neighbor),
                                           -tunneling)

        # Add local pair Coulomb interaction terms.
        hubbard_model += _coulomb_interaction_term(n_spin_orbitals,
                                                   up_index(site),
                                                   down_index(site), coulomb,
                                                   particle_hole_symmetry)

        # Add chemical potential and magnetic field terms.
        hubbard_model += number_operator(n_spin_orbitals, up_index(site),
                                         -chemical_potential - magnetic_field)
        hubbard_model += number_operator(n_spin_orbitals, down_index(site),
                                         -chemical_potential + magnetic_field)

    return hubbard_model
Exemplo n.º 5
0
def mean_field_dwave(x_dimension,
                     y_dimension,
                     tunneling,
                     sc_gap,
                     chemical_potential=0.,
                     periodic=True):
    r"""Return symbolic representation of a BCS mean-field d-wave Hamiltonian.

    The Hamiltonians of this model live on a grid of dimensions
    `x_dimension` x `y_dimension`.
    The grid can have periodic boundary conditions or not.
    Each site on the grid can have an "up" fermion and a "down" fermion.
    Therefore, there are a total of `2N` spin-orbitals,
    where `N = x_dimension * y_dimension` is the number of sites.

    The Hamiltonian for this model has the form

    .. math::

        \begin{align}
        H = &- t \sum_{\langle i,j \rangle} \sum_\sigma
                (a^\dagger_{i, \sigma} a_{j, \sigma} +
                 a^\dagger_{j, \sigma} a_{i, \sigma})
            - \mu \sum_i \sum_{\sigma} a^\dagger_{i, \sigma} a_{i, \sigma}
            \\
            &- \sum_{\langle i,j \rangle} \Delta_{ij}
              (a^\dagger_{i, \uparrow} a^\dagger_{j, \downarrow} -
               a^\dagger_{i, \downarrow} a^\dagger_{j, \uparrow} +
               a_{j, \downarrow} a_{i, \uparrow} -
               a_{j, \uparrow} a_{i, \downarrow})
        \end{align}

    where

        - The indices :math:`\langle i, j \rangle` run over pairs
          :math:`i` and :math:`j` of sites that are connected to each other
          in the grid
        - :math:`\sigma \in \{\uparrow, \downarrow\}` is the spin
        - :math:`t` is the tunneling amplitude
        - :math:`\Delta_{ij}` is equal to :math:`+\Delta/2` for
          horizontal edges and :math:`-\Delta/2` for vertical edges,
          where :math:`\Delta` is the superconducting gap.
        - :math:`\mu` is the chemical potential

    Args:
        x_dimension (int): The width of the grid.
        y_dimension (int): The height of the grid.
        tunneling (float): The tunneling amplitude :math:`t`.
        sc_gap (float): The superconducting gap :math:`\Delta`
        chemical_potential (float, optional): The chemical potential
            :math:`\mu` at each site. Default value is 0.
        periodic (bool, optional): If True, add periodic boundary conditions.
            Default is True.

    Returns:
        mean_field_dwave_model: An instance of the FermionOperator class.
    """
    # Initialize fermion operator class.
    n_sites = x_dimension * y_dimension
    n_spin_orbitals = 2 * n_sites
    mean_field_dwave_model = FermionOperator()

    # Loop through sites and add terms.
    for site in range(n_sites):
        # Add chemical potential
        mean_field_dwave_model += number_operator(n_spin_orbitals,
                                                  up_index(site),
                                                  -chemical_potential)
        mean_field_dwave_model += number_operator(n_spin_orbitals,
                                                  down_index(site),
                                                  -chemical_potential)

        # Index coupled orbitals.
        right_neighbor = site + 1
        bottom_neighbor = site + x_dimension
        # Account for periodic boundaries.
        if periodic:
            if (x_dimension > 2) and ((site + 1) % x_dimension == 0):
                right_neighbor -= x_dimension
            if (y_dimension > 2) and (site + x_dimension + 1 > n_sites):
                bottom_neighbor -= x_dimension * y_dimension

        # Add transition to neighbor on right
        if (site + 1) % x_dimension or (periodic and x_dimension > 2):
            # Add spin-up hopping term.
            operators = ((up_index(site), 1), (up_index(right_neighbor), 0))
            hopping_term = FermionOperator(operators, -tunneling)
            mean_field_dwave_model += hopping_term
            mean_field_dwave_model += hermitian_conjugated(hopping_term)
            # Add spin-down hopping term
            operators = ((down_index(site), 1), (down_index(right_neighbor),
                                                 0))
            hopping_term = FermionOperator(operators, -tunneling)
            mean_field_dwave_model += hopping_term
            mean_field_dwave_model += hermitian_conjugated(hopping_term)

            # Add pairing term
            operators = ((up_index(site), 1), (down_index(right_neighbor), 1))
            pairing_term = FermionOperator(operators, sc_gap / 2.)
            operators = ((down_index(site), 1), (up_index(right_neighbor), 1))
            pairing_term += FermionOperator(operators, -sc_gap / 2.)
            mean_field_dwave_model -= pairing_term
            mean_field_dwave_model -= hermitian_conjugated(pairing_term)

        # Add transition to neighbor below.
        if site + x_dimension + 1 <= n_sites or (periodic and y_dimension > 2):
            # Add spin-up hopping term.
            operators = ((up_index(site), 1), (up_index(bottom_neighbor), 0))
            hopping_term = FermionOperator(operators, -tunneling)
            mean_field_dwave_model += hopping_term
            mean_field_dwave_model += hermitian_conjugated(hopping_term)
            # Add spin-down hopping term
            operators = ((down_index(site), 1), (down_index(bottom_neighbor),
                                                 0))
            hopping_term = FermionOperator(operators, -tunneling)
            mean_field_dwave_model += hopping_term
            mean_field_dwave_model += hermitian_conjugated(hopping_term)

            # Add pairing term
            operators = ((up_index(site), 1), (down_index(bottom_neighbor), 1))
            pairing_term = FermionOperator(operators, -sc_gap / 2.)
            operators = ((down_index(site), 1), (up_index(bottom_neighbor), 1))
            pairing_term += FermionOperator(operators, sc_gap / 2.)
            mean_field_dwave_model -= pairing_term
            mean_field_dwave_model -= hermitian_conjugated(pairing_term)
    # Return.
    return mean_field_dwave_model
Exemplo n.º 6
0
def uccsd_singlet_get_packed_amplitudes(single_amplitudes, double_amplitudes,
                                        n_qubits, n_electrons):
    r"""Convert amplitudes for use with singlet UCCSD

    The output list contains only those amplitudes that are relevant to
    singlet UCCSD, in an order suitable for use with the function
    `uccsd_singlet_generator`.

    Args:
        single_amplitudes(ndarray): [NxN] array storing single excitation
            amplitudes corresponding to t[i,j] * (a_i^\dagger a_j - H.C.)
        double_amplitudes(ndarray): [NxNxNxN] array storing double
            excitation amplitudes corresponding to
            t[i,j,k,l] * (a_i^\dagger a_j a_k^\dagger a_l - H.C.)
        n_qubits(int): Number of spin-orbitals used to represent the system,
            which also corresponds to number of qubits in a non-compact map.
        n_electrons(int): Number of electrons in the physical system.

    Returns:
        packed_amplitudes(list): List storing the unique single
            and double excitation amplitudes for a singlet UCCSD operator.
            The ordering lists unique single excitations before double
            excitations.
    """
    n_spatial_orbitals = n_qubits // 2
    n_occupied = int(numpy.ceil(n_electrons / 2))
    n_virtual = n_spatial_orbitals - n_occupied

    singles = []
    doubles_1 = []
    doubles_2 = []

    # Get singles and doubles amplitudes associated with one
    # spatial occupied-virtual pair
    for p, q in itertools.product(range(n_virtual), range(n_occupied)):
        # Get indices of spatial orbitals
        virtual_spatial = n_occupied + p
        occupied_spatial = q
        # Get indices of spin orbitals
        virtual_up = up_index(virtual_spatial)
        virtual_down = down_index(virtual_spatial)
        occupied_up = up_index(occupied_spatial)
        occupied_down = down_index(occupied_spatial)

        # Get singles amplitude
        # Just get up amplitude, since down should be the same
        singles.append(single_amplitudes[virtual_up, occupied_up])

        # Get doubles amplitude
        doubles_1.append(double_amplitudes[virtual_up, occupied_up,
                                           virtual_down, occupied_down])

    # Get doubles amplitudes associated with two spatial occupied-virtual pairs
    for (p, q), (r, s) in itertools.combinations(
            itertools.product(range(n_virtual), range(n_occupied)), 2):
        # Get indices of spatial orbitals
        virtual_spatial_1 = n_occupied + p
        occupied_spatial_1 = q
        virtual_spatial_2 = n_occupied + r
        occupied_spatial_2 = s

        # Get indices of spin orbitals
        # Just get up amplitudes, since down and cross terms should be the same
        virtual_1_up = up_index(virtual_spatial_1)
        occupied_1_up = up_index(occupied_spatial_1)
        virtual_2_up = up_index(virtual_spatial_2)
        occupied_2_up = up_index(occupied_spatial_2)

        # Get amplitude
        doubles_2.append(double_amplitudes[virtual_1_up, occupied_1_up,
                                           virtual_2_up, occupied_2_up])

    return singles + doubles_1 + doubles_2