def from_hdf5(cls, group):
        """Generate angular distribution from HDF5 data

        Parameters
        ----------
        group : h5py.Group
            HDF5 group to read from

        Returns
        -------
        openmc.data.AngleDistribution
            Angular distribution

        """
        energy = group['energy'][()]
        data = group['mu']
        offsets = data.attrs['offsets']
        interpolation = data.attrs['interpolation']

        mu = []
        n_energy = len(energy)
        for i in range(n_energy):
            # Determine length of outgoing energy distribution and number of
            # discrete lines
            j = offsets[i]
            if i < n_energy - 1:
                n = offsets[i + 1] - j
            else:
                n = data.shape[1] - j

            interp = INTERPOLATION_SCHEME[interpolation[i]]
            mu_i = Tabular(data[0, j:j + n], data[1, j:j + n], interp)
            mu_i.c = data[2, j:j + n]

            mu.append(mu_i)

        return cls(energy, mu)
Exemplo n.º 2
0
    def from_hdf5(cls, group):
        """Generate angular distribution from HDF5 data

        Parameters
        ----------
        group : h5py.Group
            HDF5 group to read from

        Returns
        -------
        openmc.data.AngleDistribution
            Angular distribution

        """
        energy = group['energy'].value
        data = group['mu']
        offsets = data.attrs['offsets']
        interpolation = data.attrs['interpolation']

        mu = []
        n_energy = len(energy)
        for i in range(n_energy):
            # Determine length of outgoing energy distribution and number of
            # discrete lines
            j = offsets[i]
            if i < n_energy - 1:
                n = offsets[i+1] - j
            else:
                n = data.shape[1] - j

            interp = INTERPOLATION_SCHEME[interpolation[i]]
            mu_i = Tabular(data[0, j:j+n], data[1, j:j+n], interp)
            mu_i.c = data[2, j:j+n]

            mu.append(mu_i)

        return cls(energy, mu)
Exemplo n.º 3
0
    def from_ace(cls, ace, idx, ldis):
        """Generate Kalbach-Mann energy-angle distribution from ACE data

        Parameters
        ----------
        ace : openmc.data.ace.Table
            ACE table to read from
        idx : int
            Index in XSS array of the start of the energy distribution data
            (LDIS + LOCC - 1)
        ldis : int
            Index in XSS array of the start of the energy distribution block
            (e.g. JXS[11])

        Returns
        -------
        openmc.data.KalbachMann
            Kalbach-Mann energy-angle distribution

        """
        # Read number of interpolation regions and incoming energies
        n_regions = int(ace.xss[idx])
        n_energy_in = int(ace.xss[idx + 1 + 2*n_regions])

        # Get interpolation information
        idx += 1
        if n_regions > 0:
            breakpoints = ace.xss[idx:idx + n_regions].astype(int)
            interpolation = ace.xss[idx + n_regions:idx + 2*n_regions].astype(int)
        else:
            breakpoints = np.array([n_energy_in])
            interpolation = np.array([2])

        # Incoming energies at which distributions exist
        idx += 2*n_regions + 1
        energy = ace.xss[idx:idx + n_energy_in]*EV_PER_MEV

        # Location of distributions
        idx += n_energy_in
        loc_dist = ace.xss[idx:idx + n_energy_in].astype(int)

        # Initialize variables
        energy_out = []
        km_r = []
        km_a = []

        # Read each outgoing energy distribution
        for i in range(n_energy_in):
            idx = ldis + loc_dist[i] - 1

            # intt = interpolation scheme (1=hist, 2=lin-lin)
            INTTp = int(ace.xss[idx])
            intt = INTTp % 10
            n_discrete_lines = (INTTp - intt)//10
            if intt not in (1, 2):
                warn("Interpolation scheme for continuous tabular distribution "
                     "is not histogram or linear-linear.")
                intt = 2

            n_energy_out = int(ace.xss[idx + 1])
            data = ace.xss[idx + 2:idx + 2 + 5*n_energy_out].copy()
            data.shape = (5, n_energy_out)
            data[0,:] *= EV_PER_MEV

            # Create continuous distribution
            eout_continuous = Tabular(data[0][n_discrete_lines:],
                                      data[1][n_discrete_lines:]/EV_PER_MEV,
                                      INTERPOLATION_SCHEME[intt],
                                      ignore_negative=True)
            eout_continuous.c = data[2][n_discrete_lines:]
            if np.any(data[1][n_discrete_lines:] < 0.0):
                warn("Kalbach-Mann energy distribution has negative "
                     "probabilities.")

            # If discrete lines are present, create a mixture distribution
            if n_discrete_lines > 0:
                eout_discrete = Discrete(data[0][:n_discrete_lines],
                                         data[1][:n_discrete_lines])
                eout_discrete.c = data[2][:n_discrete_lines]
                if n_discrete_lines == n_energy_out:
                    eout_i = eout_discrete
                else:
                    p_discrete = min(sum(eout_discrete.p), 1.0)
                    eout_i = Mixture([p_discrete, 1. - p_discrete],
                                     [eout_discrete, eout_continuous])
            else:
                eout_i = eout_continuous

            energy_out.append(eout_i)
            km_r.append(Tabulated1D(data[0], data[3]))
            km_a.append(Tabulated1D(data[0], data[4]))

        return cls(breakpoints, interpolation, energy, energy_out, km_r, km_a)
Exemplo n.º 4
0
    def from_hdf5(cls, group):
        """Generate Kalbach-Mann distribution from HDF5 data

        Parameters
        ----------
        group : h5py.Group
            HDF5 group to read from

        Returns
        -------
        openmc.data.KalbachMann
            Kalbach-Mann energy distribution

        """
        interp_data = group['energy'].attrs['interpolation']
        energy_breakpoints = interp_data[0, :]
        energy_interpolation = interp_data[1, :]
        energy = group['energy'][()]

        data = group['distribution']
        offsets = data.attrs['offsets']
        interpolation = data.attrs['interpolation']
        n_discrete_lines = data.attrs['n_discrete_lines']

        energy_out = []
        precompound = []
        slope = []
        n_energy = len(energy)
        for i in range(n_energy):
            # Determine length of outgoing energy distribution and number of
            # discrete lines
            j = offsets[i]
            if i < n_energy - 1:
                n = offsets[i+1] - j
            else:
                n = data.shape[1] - j
            m = n_discrete_lines[i]

            # Create discrete distribution if lines are present
            if m > 0:
                eout_discrete = Discrete(data[0, j:j+m], data[1, j:j+m])
                eout_discrete.c = data[2, j:j+m]
                p_discrete = eout_discrete.c[-1]

            # Create continuous distribution
            if m < n:
                interp = INTERPOLATION_SCHEME[interpolation[i]]
                eout_continuous = Tabular(data[0, j+m:j+n], data[1, j+m:j+n], interp)
                eout_continuous.c = data[2, j+m:j+n]

            # If both continuous and discrete are present, create a mixture
            # distribution
            if m == 0:
                eout_i = eout_continuous
            elif m == n:
                eout_i = eout_discrete
            else:
                eout_i = Mixture([p_discrete, 1. - p_discrete],
                                 [eout_discrete, eout_continuous])

            # Precompound factor and slope are on rows 3 and 4, respectively
            km_r = Tabulated1D(data[0, j:j+n], data[3, j:j+n])
            km_a = Tabulated1D(data[0, j:j+n], data[4, j:j+n])

            energy_out.append(eout_i)
            precompound.append(km_r)
            slope.append(km_a)

        return cls(energy_breakpoints, energy_interpolation,
                   energy, energy_out, precompound, slope)
    def from_ace(cls, ace, location_dist, location_start):
        """Generate an angular distribution from ACE data

        Parameters
        ----------
        ace : openmc.data.ace.Table
            ACE table to read from
        location_dist : int
            Index in the XSS array corresponding to the start of a block,
            e.g. JXS(9).
        location_start : int
            Index in the XSS array corresponding to the start of an angle
            distribution array

        Returns
        -------
        openmc.data.AngleDistribution
            Angular distribution

        """
        # Set starting index for angle distribution
        idx = location_dist + location_start - 1

        # Number of energies at which angular distributions are tabulated
        n_energies = int(ace.xss[idx])
        idx += 1

        # Incoming energy grid
        energy = ace.xss[idx:idx + n_energies] * EV_PER_MEV
        idx += n_energies

        # Read locations for angular distributions
        lc = ace.xss[idx:idx + n_energies].astype(int)
        idx += n_energies

        mu = []
        for i in range(n_energies):
            if lc[i] > 0:
                # Equiprobable 32 bin distribution
                idx = location_dist + abs(lc[i]) - 1
                cos = ace.xss[idx:idx + 33]
                pdf = np.zeros(33)
                pdf[:32] = 1.0 / (32.0 * np.diff(cos))
                cdf = np.linspace(0.0, 1.0, 33)

                mu_i = Tabular(cos, pdf, 'histogram', ignore_negative=True)
                mu_i.c = cdf
            elif lc[i] < 0:
                # Tabular angular distribution
                idx = location_dist + abs(lc[i]) - 1
                intt = int(ace.xss[idx])
                n_points = int(ace.xss[idx + 1])
                data = ace.xss[idx + 2:idx + 2 + 3 * n_points]
                data.shape = (3, n_points)

                mu_i = Tabular(data[0], data[1], INTERPOLATION_SCHEME[intt])
                mu_i.c = data[2]
            else:
                # Isotropic angular distribution
                mu_i = Uniform(-1., 1.)

            mu.append(mu_i)

        return cls(energy, mu)
Exemplo n.º 6
0
    def from_ace(cls, ace, idx, ldis):
        """Generate correlated angle-energy distribution from ACE data

        Parameters
        ----------
        ace : openmc.data.ace.Table
            ACE table to read from
        idx : int
            Index in XSS array of the start of the energy distribution data
            (LDIS + LOCC - 1)
        ldis : int
            Index in XSS array of the start of the energy distribution block
            (e.g. JXS[11])

        Returns
        -------
        openmc.data.CorrelatedAngleEnergy
            Correlated angle-energy distribution

        """
        # Read number of interpolation regions and incoming energies
        n_regions = int(ace.xss[idx])
        n_energy_in = int(ace.xss[idx + 1 + 2*n_regions])

        # Get interpolation information
        idx += 1
        if n_regions > 0:
            breakpoints = ace.xss[idx:idx + n_regions].astype(int)
            interpolation = ace.xss[idx + n_regions:idx + 2*n_regions].astype(int)
        else:
            breakpoints = np.array([n_energy_in])
            interpolation = np.array([2])

        # Incoming energies at which distributions exist
        idx += 2*n_regions + 1
        energy = ace.xss[idx:idx + n_energy_in]*EV_PER_MEV

        # Location of distributions
        idx += n_energy_in
        loc_dist = ace.xss[idx:idx + n_energy_in].astype(int)

        # Initialize list of distributions
        energy_out = []
        mu = []

        # Read each outgoing energy distribution
        for i in range(n_energy_in):
            idx = ldis + loc_dist[i] - 1

            # intt = interpolation scheme (1=hist, 2=lin-lin)
            INTTp = int(ace.xss[idx])
            intt = INTTp % 10
            n_discrete_lines = (INTTp - intt)//10
            if intt not in (1, 2):
                warn("Interpolation scheme for continuous tabular distribution "
                     "is not histogram or linear-linear.")
                intt = 2

            # Secondary energy distribution
            n_energy_out = int(ace.xss[idx + 1])
            data = ace.xss[idx + 2:idx + 2 + 4*n_energy_out].copy()
            data.shape = (4, n_energy_out)
            data[0,:] *= EV_PER_MEV

            # Create continuous distribution
            eout_continuous = Tabular(data[0][n_discrete_lines:],
                                      data[1][n_discrete_lines:]/EV_PER_MEV,
                                      INTERPOLATION_SCHEME[intt],
                                      ignore_negative=True)
            eout_continuous.c = data[2][n_discrete_lines:]
            if np.any(data[1][n_discrete_lines:] < 0.0):
                warn("Correlated angle-energy distribution has negative "
                     "probabilities.")

            # If discrete lines are present, create a mixture distribution
            if n_discrete_lines > 0:
                eout_discrete = Discrete(data[0][:n_discrete_lines],
                                         data[1][:n_discrete_lines])
                eout_discrete.c = data[2][:n_discrete_lines]
                if n_discrete_lines == n_energy_out:
                    eout_i = eout_discrete
                else:
                    p_discrete = min(sum(eout_discrete.p), 1.0)
                    eout_i = Mixture([p_discrete, 1. - p_discrete],
                                     [eout_discrete, eout_continuous])
            else:
                eout_i = eout_continuous

            energy_out.append(eout_i)

            lc = data[3].astype(int)

            # Secondary angular distributions
            mu_i = []
            for j in range(n_energy_out):
                if lc[j] > 0:
                    idx = ldis + abs(lc[j]) - 1

                    intt = int(ace.xss[idx])
                    n_cosine = int(ace.xss[idx + 1])
                    data = ace.xss[idx + 2:idx + 2 + 3*n_cosine]
                    data.shape = (3, n_cosine)

                    mu_ij = Tabular(data[0], data[1], INTERPOLATION_SCHEME[intt])
                    mu_ij.c = data[2]
                else:
                    # Isotropic distribution
                    mu_ij = Uniform(-1., 1.)

                mu_i.append(mu_ij)

            # Add cosine distributions for this incoming energy to list
            mu.append(mu_i)

        return cls(breakpoints, interpolation, energy, energy_out, mu)
Exemplo n.º 7
0
    def from_hdf5(cls, group):
        """Generate correlated angle-energy distribution from HDF5 data

        Parameters
        ----------
        group : h5py.Group
            HDF5 group to read from

        Returns
        -------
        openmc.data.CorrelatedAngleEnergy
            Correlated angle-energy distribution

        """
        interp_data = group['energy'].attrs['interpolation']
        energy_breakpoints = interp_data[0, :]
        energy_interpolation = interp_data[1, :]
        energy = group['energy'].value

        offsets = group['energy_out'].attrs['offsets']
        interpolation = group['energy_out'].attrs['interpolation']
        n_discrete_lines = group['energy_out'].attrs['n_discrete_lines']
        dset_eout = group['energy_out'].value
        energy_out = []

        dset_mu = group['mu'].value
        mu = []

        n_energy = len(energy)
        for i in range(n_energy):
            # Determine length of outgoing energy distribution and number of
            # discrete lines
            offset_e = offsets[i]
            if i < n_energy - 1:
                n = offsets[i+1] - offset_e
            else:
                n = dset_eout.shape[1] - offset_e
            m = n_discrete_lines[i]

            # Create discrete distribution if lines are present
            if m > 0:
                x = dset_eout[0, offset_e:offset_e+m]
                p = dset_eout[1, offset_e:offset_e+m]
                eout_discrete = Discrete(x, p)
                eout_discrete.c = dset_eout[2, offset_e:offset_e+m]
                p_discrete = eout_discrete.c[-1]

            # Create continuous distribution
            if m < n:
                interp = INTERPOLATION_SCHEME[interpolation[i]]

                x = dset_eout[0, offset_e+m:offset_e+n]
                p = dset_eout[1, offset_e+m:offset_e+n]
                eout_continuous = Tabular(x, p, interp, ignore_negative=True)
                eout_continuous.c = dset_eout[2, offset_e+m:offset_e+n]

            # If both continuous and discrete are present, create a mixture
            # distribution
            if m == 0:
                eout_i = eout_continuous
            elif m == n:
                eout_i = eout_discrete
            else:
                eout_i = Mixture([p_discrete, 1. - p_discrete],
                                 [eout_discrete, eout_continuous])

            # Read angular distributions
            mu_i = []
            for j in range(n):
                # Determine interpolation scheme
                interp_code = int(dset_eout[3, offsets[i] + j])

                # Determine offset and length
                offset_mu = int(dset_eout[4, offsets[i] + j])
                if offsets[i] + j < dset_eout.shape[1] - 1:
                    n_mu = int(dset_eout[4, offsets[i] + j + 1]) - offset_mu
                else:
                    n_mu = dset_mu.shape[1] - offset_mu

                # Get data
                x = dset_mu[0, offset_mu:offset_mu+n_mu]
                p = dset_mu[1, offset_mu:offset_mu+n_mu]
                c = dset_mu[2, offset_mu:offset_mu+n_mu]

                if interp_code == 0:
                    mu_ij = Discrete(x, p)
                else:
                    mu_ij = Tabular(x, p, INTERPOLATION_SCHEME[interp_code],
                                    ignore_negative=True)
                mu_ij.c = c
                mu_i.append(mu_ij)

                offset_mu += n_mu

            energy_out.append(eout_i)
            mu.append(mu_i)

        return cls(energy_breakpoints, energy_interpolation,
                   energy, energy_out, mu)
Exemplo n.º 8
0
    def from_ace(cls, ace, idx, ldis):
        """Generate correlated angle-energy distribution from ACE data

        Parameters
        ----------
        ace : openmc.data.ace.Table
            ACE table to read from
        idx : int
            Index in XSS array of the start of the energy distribution data
            (LDIS + LOCC - 1)
        ldis : int
            Index in XSS array of the start of the energy distribution block
            (e.g. JXS[11])

        Returns
        -------
        openmc.data.CorrelatedAngleEnergy
            Correlated angle-energy distribution

        """
        # Read number of interpolation regions and incoming energies
        n_regions = int(ace.xss[idx])
        n_energy_in = int(ace.xss[idx + 1 + 2*n_regions])

        # Get interpolation information
        idx += 1
        if n_regions > 0:
            breakpoints = ace.xss[idx:idx + n_regions].astype(int)
            interpolation = ace.xss[idx + n_regions:idx + 2*n_regions].astype(int)
        else:
            breakpoints = np.array([n_energy_in])
            interpolation = np.array([2])

        # Incoming energies at which distributions exist
        idx += 2*n_regions + 1
        energy = ace.xss[idx:idx + n_energy_in]*EV_PER_MEV

        # Location of distributions
        idx += n_energy_in
        loc_dist = ace.xss[idx:idx + n_energy_in].astype(int)

        # Initialize list of distributions
        energy_out = []
        mu = []

        # Read each outgoing energy distribution
        for i in range(n_energy_in):
            idx = ldis + loc_dist[i] - 1

            # intt = interpolation scheme (1=hist, 2=lin-lin). When discrete
            # lines are present, the value given is 10*n_discrete_lines + intt
            n_discrete_lines, intt = divmod(int(ace.xss[idx]), 10)
            if intt not in (1, 2):
                warn("Interpolation scheme for continuous tabular distribution "
                     "is not histogram or linear-linear.")
                intt = 2

            # Secondary energy distribution
            n_energy_out = int(ace.xss[idx + 1])
            data = ace.xss[idx + 2:idx + 2 + 4*n_energy_out].copy()
            data.shape = (4, n_energy_out)
            data[0,:] *= EV_PER_MEV

            # Create continuous distribution
            eout_continuous = Tabular(data[0][n_discrete_lines:],
                                      data[1][n_discrete_lines:]/EV_PER_MEV,
                                      INTERPOLATION_SCHEME[intt],
                                      ignore_negative=True)
            eout_continuous.c = data[2][n_discrete_lines:]
            if np.any(data[1][n_discrete_lines:] < 0.0):
                warn("Correlated angle-energy distribution has negative "
                     "probabilities.")

            # If discrete lines are present, create a mixture distribution
            if n_discrete_lines > 0:
                eout_discrete = Discrete(data[0][:n_discrete_lines],
                                         data[1][:n_discrete_lines])
                eout_discrete.c = data[2][:n_discrete_lines]
                if n_discrete_lines == n_energy_out:
                    eout_i = eout_discrete
                else:
                    p_discrete = min(sum(eout_discrete.p), 1.0)
                    eout_i = Mixture([p_discrete, 1. - p_discrete],
                                     [eout_discrete, eout_continuous])
            else:
                eout_i = eout_continuous

            energy_out.append(eout_i)

            lc = data[3].astype(int)

            # Secondary angular distributions
            mu_i = []
            for j in range(n_energy_out):
                if lc[j] > 0:
                    idx = ldis + abs(lc[j]) - 1

                    intt = int(ace.xss[idx])
                    n_cosine = int(ace.xss[idx + 1])
                    data = ace.xss[idx + 2:idx + 2 + 3*n_cosine]
                    data.shape = (3, n_cosine)

                    mu_ij = Tabular(data[0], data[1], INTERPOLATION_SCHEME[intt])
                    mu_ij.c = data[2]
                else:
                    # Isotropic distribution
                    mu_ij = Uniform(-1., 1.)

                mu_i.append(mu_ij)

            # Add cosine distributions for this incoming energy to list
            mu.append(mu_i)

        return cls(breakpoints, interpolation, energy, energy_out, mu)
Exemplo n.º 9
0
    def from_hdf5(cls, group):
        """Generate correlated angle-energy distribution from HDF5 data

        Parameters
        ----------
        group : h5py.Group
            HDF5 group to read from

        Returns
        -------
        openmc.data.CorrelatedAngleEnergy
            Correlated angle-energy distribution

        """
        interp_data = group['energy'].attrs['interpolation']
        energy_breakpoints = interp_data[0, :]
        energy_interpolation = interp_data[1, :]
        energy = group['energy'][()]

        offsets = group['energy_out'].attrs['offsets']
        interpolation = group['energy_out'].attrs['interpolation']
        n_discrete_lines = group['energy_out'].attrs['n_discrete_lines']
        dset_eout = group['energy_out'][()]
        energy_out = []

        dset_mu = group['mu'][()]
        mu = []

        n_energy = len(energy)
        for i in range(n_energy):
            # Determine length of outgoing energy distribution and number of
            # discrete lines
            offset_e = offsets[i]
            if i < n_energy - 1:
                n = offsets[i+1] - offset_e
            else:
                n = dset_eout.shape[1] - offset_e
            m = n_discrete_lines[i]

            # Create discrete distribution if lines are present
            if m > 0:
                x = dset_eout[0, offset_e:offset_e+m]
                p = dset_eout[1, offset_e:offset_e+m]
                eout_discrete = Discrete(x, p)
                eout_discrete.c = dset_eout[2, offset_e:offset_e+m]
                p_discrete = eout_discrete.c[-1]

            # Create continuous distribution
            if m < n:
                interp = INTERPOLATION_SCHEME[interpolation[i]]

                x = dset_eout[0, offset_e+m:offset_e+n]
                p = dset_eout[1, offset_e+m:offset_e+n]
                eout_continuous = Tabular(x, p, interp, ignore_negative=True)
                eout_continuous.c = dset_eout[2, offset_e+m:offset_e+n]

            # If both continuous and discrete are present, create a mixture
            # distribution
            if m == 0:
                eout_i = eout_continuous
            elif m == n:
                eout_i = eout_discrete
            else:
                eout_i = Mixture([p_discrete, 1. - p_discrete],
                                 [eout_discrete, eout_continuous])

            # Read angular distributions
            mu_i = []
            for j in range(n):
                # Determine interpolation scheme
                interp_code = int(dset_eout[3, offsets[i] + j])

                # Determine offset and length
                offset_mu = int(dset_eout[4, offsets[i] + j])
                if offsets[i] + j < dset_eout.shape[1] - 1:
                    n_mu = int(dset_eout[4, offsets[i] + j + 1]) - offset_mu
                else:
                    n_mu = dset_mu.shape[1] - offset_mu

                # Get data
                x = dset_mu[0, offset_mu:offset_mu+n_mu]
                p = dset_mu[1, offset_mu:offset_mu+n_mu]
                c = dset_mu[2, offset_mu:offset_mu+n_mu]

                if interp_code == 0:
                    mu_ij = Discrete(x, p)
                else:
                    mu_ij = Tabular(x, p, INTERPOLATION_SCHEME[interp_code],
                                    ignore_negative=True)
                mu_ij.c = c
                mu_i.append(mu_ij)

                offset_mu += n_mu

            energy_out.append(eout_i)
            mu.append(mu_i)

        return cls(energy_breakpoints, energy_interpolation,
                   energy, energy_out, mu)
Exemplo n.º 10
0
    def from_ace(cls, ace_or_filename, name=None):
        """Generate thermal scattering data from an ACE table

        Parameters
        ----------
        ace_or_filename : openmc.data.ace.Table or str
            ACE table to read from. If given as a string, it is assumed to be
            the filename for the ACE file.
        name : str
            GND-conforming name of the material, e.g. c_H_in_H2O. If none is
            passed, the appropriate name is guessed based on the name of the ACE
            table.

        Returns
        -------
        openmc.data.ThermalScattering
            Thermal scattering data

        """
        if isinstance(ace_or_filename, Table):
            ace = ace_or_filename
        else:
            ace = get_table(ace_or_filename)

        # Get new name that is GND-consistent
        ace_name, xs = ace.name.split('.')
        name = get_thermal_name(ace_name)

        # Assign temperature to the running list
        kTs = [ace.temperature * EV_PER_MEV]
        temperatures = [
            str(int(round(ace.temperature * EV_PER_MEV / K_BOLTZMANN))) + "K"
        ]

        table = cls(name, ace.atomic_weight_ratio, kTs)

        # Incoherent inelastic scattering cross section
        idx = ace.jxs[1]
        n_energy = int(ace.xss[idx])
        energy = ace.xss[idx + 1:idx + 1 + n_energy] * EV_PER_MEV
        xs = ace.xss[idx + 1 + n_energy:idx + 1 + 2 * n_energy]
        table.inelastic_xs[temperatures[0]] = Tabulated1D(energy, xs)

        if ace.nxs[7] == 0:
            table.secondary_mode = 'equal'
        elif ace.nxs[7] == 1:
            table.secondary_mode = 'skewed'
        elif ace.nxs[7] == 2:
            table.secondary_mode = 'continuous'

        n_energy_out = ace.nxs[4]
        if table.secondary_mode in ('equal', 'skewed'):
            n_mu = ace.nxs[3]
            idx = ace.jxs[3]
            table.inelastic_e_out[temperatures[0]] = \
                ace.xss[idx:idx + n_energy * n_energy_out * (n_mu + 2):
                        n_mu + 2]*EV_PER_MEV
            table.inelastic_e_out[temperatures[0]].shape = \
                (n_energy, n_energy_out)

            table.inelastic_mu_out[temperatures[0]] = \
                ace.xss[idx:idx + n_energy * n_energy_out * (n_mu + 2)]
            table.inelastic_mu_out[temperatures[0]].shape = \
                (n_energy, n_energy_out, n_mu+2)
            table.inelastic_mu_out[temperatures[0]] = \
                table.inelastic_mu_out[temperatures[0]][:, :, 1:]
        else:
            n_mu = ace.nxs[3] - 1
            idx = ace.jxs[3]
            locc = ace.xss[idx:idx + n_energy].astype(int)
            n_energy_out = \
                ace.xss[idx + n_energy:idx + 2 * n_energy].astype(int)
            energy_out = []
            mu_out = []
            for i in range(n_energy):
                idx = locc[i]

                # Outgoing energy distribution for incoming energy i
                e = ace.xss[idx + 1:idx + 1 + n_energy_out[i] *
                            (n_mu + 3):n_mu + 3] * EV_PER_MEV
                p = ace.xss[idx + 2:idx + 2 + n_energy_out[i] *
                            (n_mu + 3):n_mu + 3] / EV_PER_MEV
                c = ace.xss[idx + 3:idx + 3 + n_energy_out[i] *
                            (n_mu + 3):n_mu + 3]
                eout_i = Tabular(e, p, 'linear-linear', ignore_negative=True)
                eout_i.c = c

                # Outgoing angle distribution for each
                # (incoming, outgoing) energy pair
                mu_i = []
                for j in range(n_energy_out[i]):
                    mu = ace.xss[idx + 4:idx + 4 + n_mu]
                    p_mu = 1. / n_mu * np.ones(n_mu)
                    mu_ij = Discrete(mu, p_mu)
                    mu_ij.c = np.cumsum(p_mu)
                    mu_i.append(mu_ij)
                    idx += 3 + n_mu

                energy_out.append(eout_i)
                mu_out.append(mu_i)

            # Create correlated angle-energy distribution
            breakpoints = [n_energy]
            interpolation = [2]
            energy = table.inelastic_xs[temperatures[0]].x
            table.inelastic_dist[temperatures[0]] = CorrelatedAngleEnergy(
                breakpoints, interpolation, energy, energy_out, mu_out)

        # Incoherent/coherent elastic scattering cross section
        idx = ace.jxs[4]
        n_mu = ace.nxs[6] + 1
        if idx != 0:
            n_energy = int(ace.xss[idx])
            energy = ace.xss[idx + 1:idx + 1 + n_energy] * EV_PER_MEV
            P = ace.xss[idx + 1 + n_energy:idx + 1 + 2 * n_energy]

            if ace.nxs[5] == 4:
                # Coherent elastic
                table.elastic_xs[temperatures[0]] = CoherentElastic(
                    energy, P * EV_PER_MEV)

                # Coherent elastic shouldn't have angular distributions listed
                assert n_mu == 0
            else:
                # Incoherent elastic
                table.elastic_xs[temperatures[0]] = Tabulated1D(energy, P)

                # Angular distribution
                assert n_mu > 0
                idx = ace.jxs[6]
                table.elastic_mu_out[temperatures[0]] = \
                    ace.xss[idx:idx + n_energy * n_mu]
                table.elastic_mu_out[temperatures[0]].shape = \
                    (n_energy, n_mu)

        # Get relevant nuclides -- NJOY only allows one to specify three
        # nuclides that the S(a,b) table applies to. Thus, for all elements
        # other than H and Fe, we automatically add all the naturally-occurring
        # isotopes.
        for zaid, awr in ace.pairs:
            if zaid > 0:
                Z, A = divmod(zaid, 1000)
                element = ATOMIC_SYMBOL[Z]
                if element in ['H', 'Fe']:
                    table.nuclides.append(element + str(A))
                else:
                    if element + '0' not in table.nuclides:
                        table.nuclides.append(element + '0')
                    for isotope in sorted(NATURAL_ABUNDANCE):
                        if re.match(r'{}\d+'.format(element), isotope):
                            if isotope not in table.nuclides:
                                table.nuclides.append(isotope)

        return table
Exemplo n.º 11
0
    def from_ace(cls, ace_or_filename, name=None):
        """Generate thermal scattering data from an ACE table

        Parameters
        ----------
        ace_or_filename : openmc.data.ace.Table or str
            ACE table to read from. If given as a string, it is assumed to be
            the filename for the ACE file.
        name : str
            GND-conforming name of the material, e.g. c_H_in_H2O. If none is
            passed, the appropriate name is guessed based on the name of the ACE
            table.

        Returns
        -------
        openmc.data.ThermalScattering
            Thermal scattering data

        """
        if isinstance(ace_or_filename, Table):
            ace = ace_or_filename
        else:
            ace = get_table(ace_or_filename)

        # Get new name that is GND-consistent
        ace_name, xs = ace.name.split('.')
        name = get_thermal_name(ace_name)

        # Assign temperature to the running list
        kTs = [ace.temperature*EV_PER_MEV]
        temperatures = [str(int(round(ace.temperature*EV_PER_MEV
                                      / K_BOLTZMANN))) + "K"]

        table = cls(name, ace.atomic_weight_ratio, kTs)

        # Incoherent inelastic scattering cross section
        idx = ace.jxs[1]
        n_energy = int(ace.xss[idx])
        energy = ace.xss[idx+1 : idx+1+n_energy]*EV_PER_MEV
        xs = ace.xss[idx+1+n_energy : idx+1+2*n_energy]
        table.inelastic_xs[temperatures[0]] = Tabulated1D(energy, xs)

        if ace.nxs[7] == 0:
            table.secondary_mode = 'equal'
        elif ace.nxs[7] == 1:
            table.secondary_mode = 'skewed'
        elif ace.nxs[7] == 2:
            table.secondary_mode = 'continuous'

        n_energy_out = ace.nxs[4]
        if table.secondary_mode in ('equal', 'skewed'):
            n_mu = ace.nxs[3]
            idx = ace.jxs[3]
            table.inelastic_e_out[temperatures[0]] = \
                ace.xss[idx:idx + n_energy * n_energy_out * (n_mu + 2):
                        n_mu + 2]*EV_PER_MEV
            table.inelastic_e_out[temperatures[0]].shape = \
                (n_energy, n_energy_out)

            table.inelastic_mu_out[temperatures[0]] = \
                ace.xss[idx:idx + n_energy * n_energy_out * (n_mu + 2)]
            table.inelastic_mu_out[temperatures[0]].shape = \
                (n_energy, n_energy_out, n_mu+2)
            table.inelastic_mu_out[temperatures[0]] = \
                table.inelastic_mu_out[temperatures[0]][:, :, 1:]
        else:
            n_mu = ace.nxs[3] - 1
            idx = ace.jxs[3]
            locc = ace.xss[idx:idx + n_energy].astype(int)
            n_energy_out = \
                ace.xss[idx + n_energy:idx + 2 * n_energy].astype(int)
            energy_out = []
            mu_out = []
            for i in range(n_energy):
                idx = locc[i]

                # Outgoing energy distribution for incoming energy i
                e = ace.xss[idx + 1:idx + 1 + n_energy_out[i]*(n_mu + 3):
                            n_mu + 3]*EV_PER_MEV
                p = ace.xss[idx + 2:idx + 2 + n_energy_out[i]*(n_mu + 3):
                            n_mu + 3]/EV_PER_MEV
                c = ace.xss[idx + 3:idx + 3 + n_energy_out[i]*(n_mu + 3):
                            n_mu + 3]
                eout_i = Tabular(e, p, 'linear-linear', ignore_negative=True)
                eout_i.c = c

                # Outgoing angle distribution for each
                # (incoming, outgoing) energy pair
                mu_i = []
                for j in range(n_energy_out[i]):
                    mu = ace.xss[idx + 4:idx + 4 + n_mu]
                    p_mu = 1. / n_mu * np.ones(n_mu)
                    mu_ij = Discrete(mu, p_mu)
                    mu_ij.c = np.cumsum(p_mu)
                    mu_i.append(mu_ij)
                    idx += 3 + n_mu

                energy_out.append(eout_i)
                mu_out.append(mu_i)

            # Create correlated angle-energy distribution
            breakpoints = [n_energy]
            interpolation = [2]
            energy = table.inelastic_xs[temperatures[0]].x
            table.inelastic_dist[temperatures[0]] = CorrelatedAngleEnergy(
                breakpoints, interpolation, energy, energy_out, mu_out)

        # Incoherent/coherent elastic scattering cross section
        idx = ace.jxs[4]
        n_mu = ace.nxs[6] + 1
        if idx != 0:
            n_energy = int(ace.xss[idx])
            energy = ace.xss[idx + 1: idx + 1 + n_energy]*EV_PER_MEV
            P = ace.xss[idx + 1 + n_energy: idx + 1 + 2 * n_energy]

            if ace.nxs[5] == 4:
                # Coherent elastic
                table.elastic_xs[temperatures[0]] = CoherentElastic(
                    energy, P*EV_PER_MEV)

                # Coherent elastic shouldn't have angular distributions listed
                assert n_mu == 0
            else:
                # Incoherent elastic
                table.elastic_xs[temperatures[0]] = Tabulated1D(energy, P)

                # Angular distribution
                assert n_mu > 0
                idx = ace.jxs[6]
                table.elastic_mu_out[temperatures[0]] = \
                    ace.xss[idx:idx + n_energy * n_mu]
                table.elastic_mu_out[temperatures[0]].shape = \
                    (n_energy, n_mu)

        # Get relevant nuclides -- NJOY only allows one to specify three
        # nuclides that the S(a,b) table applies to. Thus, for all elements
        # other than H and Fe, we automatically add all the naturally-occurring
        # isotopes.
        for zaid, awr in ace.pairs:
            if zaid > 0:
                Z, A = divmod(zaid, 1000)
                element = ATOMIC_SYMBOL[Z]
                if element in ['H', 'Fe']:
                    table.nuclides.append(element + str(A))
                else:
                    if element + '0' not in table.nuclides:
                        table.nuclides.append(element + '0')
                    for isotope in sorted(NATURAL_ABUNDANCE):
                        if re.match(r'{}\d+'.format(element), isotope):
                            if isotope not in table.nuclides:
                                table.nuclides.append(isotope)

        return table
Exemplo n.º 12
0
    def from_ace(cls, ace_or_filename, name=None):
        """Generate thermal scattering data from an ACE table

        Parameters
        ----------
        ace_or_filename : openmc.data.ace.Table or str
            ACE table to read from. If given as a string, it is assumed to be
            the filename for the ACE file.
        name : str
            GND-conforming name of the material, e.g. c_H_in_H2O. If none is
            passed, the appropriate name is guessed based on the name of the ACE
            table.

        Returns
        -------
        openmc.data.ThermalScattering
            Thermal scattering data

        """
        if isinstance(ace_or_filename, Table):
            ace = ace_or_filename
        else:
            ace = get_table(ace_or_filename)

        # Get new name that is GND-consistent
        ace_name, xs = ace.name.split('.')
        if not xs.endswith('t'):
            raise TypeError(
                "{} is not a thermal scattering ACE table.".format(ace))
        if name is None:
            name = get_thermal_name(ace_name)

        # Assign temperature to the running list
        kTs = [ace.temperature * EV_PER_MEV]

        # Incoherent inelastic scattering cross section
        idx = ace.jxs[1]
        n_energy = int(ace.xss[idx])
        energy = ace.xss[idx + 1:idx + 1 + n_energy] * EV_PER_MEV
        xs = ace.xss[idx + 1 + n_energy:idx + 1 + 2 * n_energy]
        inelastic_xs = Tabulated1D(energy, xs)
        energy_max = energy[-1]

        # Incoherent inelastic angle-energy distribution
        continuous = (ace.nxs[7] == 2)
        n_energy_out = ace.nxs[4]
        if not continuous:
            n_mu = ace.nxs[3]
            idx = ace.jxs[3]
            energy_out = ace.xss[idx:idx + n_energy * n_energy_out *
                                 (n_mu + 2):n_mu + 2] * EV_PER_MEV
            energy_out.shape = (n_energy, n_energy_out)

            mu_out = ace.xss[idx:idx + n_energy * n_energy_out * (n_mu + 2)]
            mu_out.shape = (n_energy, n_energy_out, n_mu + 2)
            mu_out = mu_out[:, :, 1:]
            skewed = (ace.nxs[7] == 1)
            distribution = IncoherentInelasticAEDiscrete(
                energy_out, mu_out, skewed)
        else:
            n_mu = ace.nxs[3] - 1
            idx = ace.jxs[3]
            locc = ace.xss[idx:idx + n_energy].astype(int)
            n_energy_out = \
                ace.xss[idx + n_energy:idx + 2 * n_energy].astype(int)
            energy_out = []
            mu_out = []
            for i in range(n_energy):
                idx = locc[i]

                # Outgoing energy distribution for incoming energy i
                e = ace.xss[idx + 1:idx + 1 + n_energy_out[i] *
                            (n_mu + 3):n_mu + 3] * EV_PER_MEV
                p = ace.xss[idx + 2:idx + 2 + n_energy_out[i] *
                            (n_mu + 3):n_mu + 3] / EV_PER_MEV
                c = ace.xss[idx + 3:idx + 3 + n_energy_out[i] *
                            (n_mu + 3):n_mu + 3]
                eout_i = Tabular(e, p, 'linear-linear', ignore_negative=True)
                eout_i.c = c

                # Outgoing angle distribution for each
                # (incoming, outgoing) energy pair
                mu_i = []
                for j in range(n_energy_out[i]):
                    mu = ace.xss[idx + 4:idx + 4 + n_mu]
                    p_mu = 1. / n_mu * np.ones(n_mu)
                    mu_ij = Discrete(mu, p_mu)
                    mu_ij.c = np.cumsum(p_mu)
                    mu_i.append(mu_ij)
                    idx += 3 + n_mu

                energy_out.append(eout_i)
                mu_out.append(mu_i)

            # Create correlated angle-energy distribution
            breakpoints = [n_energy]
            interpolation = [2]
            energy = inelastic_xs.x
            distribution = IncoherentInelasticAE(breakpoints, interpolation,
                                                 energy, energy_out, mu_out)

        table = cls(name, ace.atomic_weight_ratio, energy_max, kTs)
        T = table.temperatures[0]
        table.inelastic = ThermalScatteringReaction({T: inelastic_xs},
                                                    {T: distribution})

        # Incoherent/coherent elastic scattering cross section
        idx = ace.jxs[4]
        n_mu = ace.nxs[6] + 1
        if idx != 0:
            n_energy = int(ace.xss[idx])
            energy = ace.xss[idx + 1:idx + 1 + n_energy] * EV_PER_MEV
            P = ace.xss[idx + 1 + n_energy:idx + 1 + 2 * n_energy]

            if ace.nxs[5] == 4:
                # Coherent elastic
                xs = CoherentElastic(energy, P * EV_PER_MEV)
                distribution = CoherentElasticAE(xs)

                # Coherent elastic shouldn't have angular distributions listed
                assert n_mu == 0
            else:
                # Incoherent elastic
                xs = Tabulated1D(energy, P)

                # Angular distribution
                assert n_mu > 0
                idx = ace.jxs[6]
                mu_out = ace.xss[idx:idx + n_energy * n_mu]
                mu_out.shape = (n_energy, n_mu)
                distribution = IncoherentElasticAEDiscrete(mu_out)

            table.elastic = ThermalScatteringReaction({T: xs},
                                                      {T: distribution})

        # Get relevant nuclides -- NJOY only allows one to specify three
        # nuclides that the S(a,b) table applies to. Thus, for all elements
        # other than H and Fe, we automatically add all the naturally-occurring
        # isotopes.
        for zaid, awr in ace.pairs:
            if zaid > 0:
                Z, A = divmod(zaid, 1000)
                element = ATOMIC_SYMBOL[Z]
                if element in ['H', 'Fe']:
                    table.nuclides.append(element + str(A))
                else:
                    if element + '0' not in table.nuclides:
                        table.nuclides.append(element + '0')
                    for isotope, _ in isotopes(element):
                        if isotope not in table.nuclides:
                            table.nuclides.append(isotope)

        return table
Exemplo n.º 13
0
    def from_ace(cls, ace, location_dist, location_start):
        """Generate an angular distribution from ACE data

        Parameters
        ----------
        ace : openmc.data.ace.Table
            ACE table to read from
        location_dist : int
            Index in the XSS array corresponding to the start of a block,
            e.g. JXS(9).
        location_start : int
            Index in the XSS array corresponding to the start of an angle
            distribution array

        Returns
        -------
        openmc.data.AngleDistribution
            Angular distribution

        """
        # Set starting index for angle distribution
        idx = location_dist + location_start - 1

        # Number of energies at which angular distributions are tabulated
        n_energies = int(ace.xss[idx])
        idx += 1

        # Incoming energy grid
        energy = ace.xss[idx:idx + n_energies]*EV_PER_MEV
        idx += n_energies

        # Read locations for angular distributions
        lc = ace.xss[idx:idx + n_energies].astype(int)
        idx += n_energies

        mu = []
        for i in range(n_energies):
            if lc[i] > 0:
                # Equiprobable 32 bin distribution
                idx = location_dist + abs(lc[i]) - 1
                cos = ace.xss[idx:idx + 33]
                pdf = np.zeros(33)
                pdf[:32] = 1.0/(32.0*np.diff(cos))
                cdf = np.linspace(0.0, 1.0, 33)

                mu_i = Tabular(cos, pdf, 'histogram', ignore_negative=True)
                mu_i.c = cdf
            elif lc[i] < 0:
                # Tabular angular distribution
                idx = location_dist + abs(lc[i]) - 1
                intt = int(ace.xss[idx])
                n_points = int(ace.xss[idx + 1])
                data = ace.xss[idx + 2:idx + 2 + 3*n_points]
                data.shape = (3, n_points)

                mu_i = Tabular(data[0], data[1], INTERPOLATION_SCHEME[intt])
                mu_i.c = data[2]
            else:
                # Isotropic angular distribution
                mu_i = Uniform(-1., 1.)

            mu.append(mu_i)

        return cls(energy, mu)
Exemplo n.º 14
0
    def from_ace(cls, ace, idx, ldis):
        """Generate Kalbach-Mann energy-angle distribution from ACE data

        Parameters
        ----------
        ace : openmc.data.ace.Table
            ACE table to read from
        idx : int
            Index in XSS array of the start of the energy distribution data
            (LDIS + LOCC - 1)
        ldis : int
            Index in XSS array of the start of the energy distribution block
            (e.g. JXS[11])

        Returns
        -------
        openmc.data.KalbachMann
            Kalbach-Mann energy-angle distribution

        """
        # Read number of interpolation regions and incoming energies
        n_regions = int(ace.xss[idx])
        n_energy_in = int(ace.xss[idx + 1 + 2*n_regions])

        # Get interpolation information
        idx += 1
        if n_regions > 0:
            breakpoints = ace.xss[idx:idx + n_regions].astype(int)
            interpolation = ace.xss[idx + n_regions:idx + 2*n_regions].astype(int)
        else:
            breakpoints = np.array([n_energy_in])
            interpolation = np.array([2])

        # Incoming energies at which distributions exist
        idx += 2*n_regions + 1
        energy = ace.xss[idx:idx + n_energy_in]*EV_PER_MEV

        # Location of distributions
        idx += n_energy_in
        loc_dist = ace.xss[idx:idx + n_energy_in].astype(int)

        # Initialize variables
        energy_out = []
        km_r = []
        km_a = []

        # Read each outgoing energy distribution
        for i in range(n_energy_in):
            idx = ldis + loc_dist[i] - 1

            # intt = interpolation scheme (1=hist, 2=lin-lin)
            INTTp = int(ace.xss[idx])
            intt = INTTp % 10
            n_discrete_lines = (INTTp - intt)//10
            if intt not in (1, 2):
                warn("Interpolation scheme for continuous tabular distribution "
                     "is not histogram or linear-linear.")
                intt = 2

            n_energy_out = int(ace.xss[idx + 1])
            data = ace.xss[idx + 2:idx + 2 + 5*n_energy_out].copy()
            data.shape = (5, n_energy_out)
            data[0,:] *= EV_PER_MEV

            # Create continuous distribution
            eout_continuous = Tabular(data[0][n_discrete_lines:],
                                      data[1][n_discrete_lines:]/EV_PER_MEV,
                                      INTERPOLATION_SCHEME[intt],
                                      ignore_negative=True)
            eout_continuous.c = data[2][n_discrete_lines:]
            if np.any(data[1][n_discrete_lines:] < 0.0):
                warn("Kalbach-Mann energy distribution has negative "
                     "probabilities.")

            # If discrete lines are present, create a mixture distribution
            if n_discrete_lines > 0:
                eout_discrete = Discrete(data[0][:n_discrete_lines],
                                         data[1][:n_discrete_lines])
                eout_discrete.c = data[2][:n_discrete_lines]
                if n_discrete_lines == n_energy_out:
                    eout_i = eout_discrete
                else:
                    p_discrete = min(sum(eout_discrete.p), 1.0)
                    eout_i = Mixture([p_discrete, 1. - p_discrete],
                                     [eout_discrete, eout_continuous])
            else:
                eout_i = eout_continuous

            energy_out.append(eout_i)
            km_r.append(Tabulated1D(data[0], data[3]))
            km_a.append(Tabulated1D(data[0], data[4]))

        return cls(breakpoints, interpolation, energy, energy_out, km_r, km_a)
Exemplo n.º 15
0
    def from_hdf5(cls, group):
        """Generate Kalbach-Mann distribution from HDF5 data

        Parameters
        ----------
        group : h5py.Group
            HDF5 group to read from

        Returns
        -------
        openmc.data.KalbachMann
            Kalbach-Mann energy distribution

        """
        interp_data = group['energy'].attrs['interpolation']
        energy_breakpoints = interp_data[0, :]
        energy_interpolation = interp_data[1, :]
        energy = group['energy'].value

        data = group['distribution']
        offsets = data.attrs['offsets']
        interpolation = data.attrs['interpolation']
        n_discrete_lines = data.attrs['n_discrete_lines']

        energy_out = []
        precompound = []
        slope = []
        n_energy = len(energy)
        for i in range(n_energy):
            # Determine length of outgoing energy distribution and number of
            # discrete lines
            j = offsets[i]
            if i < n_energy - 1:
                n = offsets[i+1] - j
            else:
                n = data.shape[1] - j
            m = n_discrete_lines[i]

            # Create discrete distribution if lines are present
            if m > 0:
                eout_discrete = Discrete(data[0, j:j+m], data[1, j:j+m])
                eout_discrete.c = data[2, j:j+m]
                p_discrete = eout_discrete.c[-1]

            # Create continuous distribution
            if m < n:
                interp = INTERPOLATION_SCHEME[interpolation[i]]
                eout_continuous = Tabular(data[0, j+m:j+n], data[1, j+m:j+n], interp)
                eout_continuous.c = data[2, j+m:j+n]

            # If both continuous and discrete are present, create a mixture
            # distribution
            if m == 0:
                eout_i = eout_continuous
            elif m == n:
                eout_i = eout_discrete
            else:
                eout_i = Mixture([p_discrete, 1. - p_discrete],
                                 [eout_discrete, eout_continuous])

            km_r = Tabulated1D(data[0, j:j+n], data[3, j:j+n])
            km_a = Tabulated1D(data[0, j:j+n], data[4, j:j+n])

            energy_out.append(eout_i)
            precompound.append(km_r)
            slope.append(km_a)

        return cls(energy_breakpoints, energy_interpolation,
                   energy, energy_out, precompound, slope)