def setUp(self):
     self.surrogate = NearestNeighbor(interpolant_type='linear')
     self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
     self.y = np.array([[1., 0., .5, 1.], [1., 0., .5,
                                           1.], [1., 0., .5, 1.],
                        [1., 0., .5, 1.], [0., 1., .5, 0.]])
     self.surrogate.train(self.x, self.y)
Exemplo n.º 2
0
    def __init__(self):
        super(CompressorMap, self).__init__()

        self.add_input('Nc', val=1.0)
        self.add_input('Rline', val=2.0)
        self.add_input('alpha', val=0.0)

        self.add_output('PR', val=1.0, surrogate=NearestNeighbor(interpolant_type='linear'))
        self.add_output('eff', val=1.0, surrogate=NearestNeighbor(interpolant_type='linear'))
        self.add_output('Wc', val=1.0, surrogate=NearestNeighbor(interpolant_type='linear'))
Exemplo n.º 3
0
    def test_unrecognized_type(self):
        with self.assertRaises(ValueError) as cm:
            NearestNeighbor(interpolant_type='junk')

        expected_msg = "NearestNeighbor: Value ('junk') of option 'interpolant_type' is not one of " \
                       "['linear', 'weighted', 'rbf']."
        self.assertEqual(expected_msg, str(cm.exception))
Exemplo n.º 4
0
 def setup(self):
     surrogate = NearestNeighbor()
     self.add_output('sin_x',
                     0.,
                     surrogate=surrogate,
                     training_data=.5 *
                     np.sin(np.linspace(0, 10, 20)))
Exemplo n.º 5
0
class TestRBFInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf',
                                         num_neighbors=4)
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [2.], [2.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-8)

    def test_bulk_prediction(self):

        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-8)

    def test_jacobian(self):
        from distutils.version import LooseVersion
        if LooseVersion(np.__version__) >= LooseVersion("1.14"):
            raise unittest.SkipTest("This test doesn't work in numpy 1.14.")

        test_x = np.array([[0.5], [2.5], [1.0]])
        expected_deriv = np.array([[2.34609214], [-2.34609214], [1.5121989]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.linearize(x0)
            assert_rel_error(self, jac, [y0], 1e-6)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.linearize(test_x)

        assert_rel_error(self, mu, np.array([[2.34609214]]), 1e-6)
Exemplo n.º 6
0
class TestRBFInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf', num_neighbors=4)
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [2.], [2.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-8)

    def test_bulk_prediction(self):

        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-8)

    def test_jacobian(self):
        from distutils.version import LooseVersion
        if LooseVersion(np.__version__) >= LooseVersion("1.14"):
            raise unittest.SkipTest("This test doesn't work in numpy 1.14.")

        test_x = np.array([[0.5], [2.5], [1.0]])
        expected_deriv = np.array([[2.34609214],  [-2.34609214], [1.5121989]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.linearize(x0)
            assert_rel_error(self, jac, [y0], 1e-6)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.linearize(test_x)

        assert_rel_error(self, mu, np.array([[2.34609214]]), 1e-6)
    def test_unrecognized_type(self):
        with self.assertRaises(ValueError) as cm:
            NearestNeighbor(interpolant_type='junk')

        expected_msg = "NearestNeighbor: interpolant_type 'junk' not supported." \
                       " interpolant_type must be one of ['linear', 'weighted'," \
                       " 'rbf']."

        self.assertEqual(expected_msg, str(cm.exception))
Exemplo n.º 8
0
 def setUp(self):
     self.surrogate = NearestNeighbor(interpolant_type='linear')
     self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
     self.y = np.array([[1., 0., .5, 1.],
                        [1., 0., .5, 1.],
                        [1., 0., .5, 1.],
                        [1., 0., .5, 1.],
                        [0., 1., .5, 0.]])
     self.surrogate.train(self.x, self.y)
Exemplo n.º 9
0
class TestRBFInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf', n=4)
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [2.], [2.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, y0, 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, y0, 1e-8)

    def test_bulk_prediction(self):

        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-8)

    def test_jacobian(self):
        test_x = np.array([[0.5], [2.5]])
        expected_deriv = np.array([[2.34609214],  [-2.34609214]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.jacobian(x0)
            assert_rel_error(self, jac, y0, 1e-6)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.jacobian(test_x)

        assert_rel_error(self, mu, np.array([[2.34609214]]), 1e-6)
Exemplo n.º 10
0
class TestRBFInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf', n=4)
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [2.], [2.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-8)

    def test_bulk_prediction(self):

        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-8)

    def test_jacobian(self):
        test_x = np.array([[0.5], [2.5], [1.0]])
        expected_deriv = np.array([[2.34609214], [-2.34609214], [1.5121989]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.linearize(x0)
            assert_rel_error(self, jac, [y0], 1e-6)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.linearize(test_x)

        assert_rel_error(self, mu, np.array([[2.34609214]]), 1e-6)
Exemplo n.º 11
0
    def __init__(self):
        super(CompressorMap, self).__init__()

        compmap = self.add('compmap', MetaModel())

        compmap.add_param('Nc', val=1.0)
        compmap.add_param('Rline', val=2.0)
        compmap.add_param('alpha', val=0.0)

        compmap.add_output(
            'PR',
            val=1.0,
            surrogate=NearestNeighbor(interpolant_type='linear'))
        compmap.add_output(
            'eff',
            val=1.0,
            surrogate=NearestNeighbor(interpolant_type='linear'))
        compmap.add_output(
            'Wc',
            val=1.0,
            surrogate=NearestNeighbor(interpolant_type='linear'))
Exemplo n.º 12
0
class TestWeightedInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='weighted')
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.], [1., 0., .5,
                                              1.], [1., 0., .5, 1.],
                           [1., 0., .5, 1.], [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5], [0.5, 1.0], [1.0, 1.5], [1.5, 1.],
                           [0., 1.], [.5, .5]])
        a = ((16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.))) /
             (16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)) + 8.))

        b = 8. / (8. + 16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)))
        c = (2. + 2. / (5. * np.sqrt(5))) / (3. + 2. / (5. * np.sqrt(5)))
        d = 1. / (3. + 2. / (5. * np.sqrt(5)))

        expected_y = np.array([[a, b, 0.5, a], [a, b, 0.5, a], [a, b, 0.5, a],
                               [a, b, 0.5, a], [c, d, 0.5, c],
                               [0.54872067, 0.45127933, 0.5, 0.54872067]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0, num_neighbors=5, dist_eff=3)
            assert_rel_error(self, mu, [y0], 1e-6)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5], [0.5, 1.0], [1.0, 1.5], [1.5, 1.],
                           [0., 1.], [.5, .5]])

        a = ((16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.))) /
             (16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)) + 8.))
        b = 8. / (8. + 16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)))
        c = (2. + 2. / (5. * np.sqrt(5))) / (3. + 2. / (5. * np.sqrt(5)))
        d = 1. / (3. + 2. / (5. * np.sqrt(5)))

        expected_y = np.array([[a, b, 0.5, a], [a, b, 0.5, a], [a, b, 0.5, a],
                               [a, b, 0.5, a], [c, d, 0.5, c],
                               [0.54872067, 0.45127933, 0.5, 0.54872067]])

        mu = self.surrogate.predict(test_x, num_neighbors=5, dist_eff=3)
        assert_rel_error(self, mu, expected_y, 1e-6)

    def test_jacobian(self):
        test_x = np.array([[1., 0.5], [0.5, 1.], [1., 1.5], [1.5, 1.]])
        a = 0.99511746
        expected_deriv = np.array([[[0., -a], [0., a], [0., 0.], [0., -a]],
                                   [[-a, 0], [a, 0.], [0., 0.], [-a, 0]],
                                   [[0., a], [0., -a], [0., 0.], [0., a]],
                                   [[a, 0.], [-a, 0.], [0., 0.], [a, 0.]]])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.linearize(x0)
            assert_rel_error(self, mu, y0, 1e-6)
Exemplo n.º 13
0
class TestLinearInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='linear')
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [1.], [1.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.5], [1.], [0.5]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_bulk_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.5], [1.], [0.5]])
        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-9)

    def test_jacobian(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_deriv = np.array([[1.], [0.], [-1.]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.linearize(x0)
            assert_rel_error(self, jac, [y0], 1e-9)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.linearize(test_x)

        assert_rel_error(self, mu, np.array([[1.]]), 1e-6)
Exemplo n.º 14
0
class TestLinearInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='linear')
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [1.], [1.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_near_equal(mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.5], [1.], [0.5]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_near_equal(mu, [y0], 1e-9)

    def test_bulk_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.5], [1.], [0.5]])
        mu = self.surrogate.predict(test_x)
        assert_near_equal(mu, expected_y, 1e-9)

    def test_jacobian(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_deriv = np.array([[1.], [0.], [-1.]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.linearize(x0)
            assert_near_equal(jac, [y0], 1e-9)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.linearize(test_x)

        assert_near_equal(mu, np.array([[1.]]), 1e-6)
Exemplo n.º 15
0
class TestLinearInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='linear')
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.], [1., 0., .5,
                                              1.], [1., 0., .5, 1.],
                           [1., 0., .5, 1.], [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5], [0.5, 1.0], [1.0, 1.5], [1.5, 1.],
                           [0., 1.], [.5, .5]])
        expected_y = np.array([[0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5],
                               [1., 0., 0.5, 1.], [0.5, 0.5, 0.5, 0.5]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5], [0.5, 1.0], [1.0, 1.5], [1.5, 1.],
                           [0., 1.], [.5, .5]])
        expected_y = np.array([[0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5],
                               [1., 0., 0.5, 1.], [0.5, 0.5, 0.5, 0.5]])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-9)

    def test_jacobian(self):
        test_x = np.array([[1., 0.5], [0.5, 1.], [1., 1.5], [1.5, 1.]])
        expected_deriv = np.array([[[0., -1.], [0., 1.], [0., 0.], [0., -1.]],
                                   [[-1., 0.], [1., 0.], [0., 0.], [-1., 0.]],
                                   [[0., 1.], [0., -1.], [0., 0.], [0., 1.]],
                                   [[1., 0.], [-1., 0.], [0., 0.], [1., 0.]]])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.linearize(x0)
            assert_rel_error(self, mu, y0, 1e-9)
Exemplo n.º 16
0
class TestLinearInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='linear')
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])
        expected_y = np.array([[0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [1., 0., 0.5, 1.],
                               [0.5, 0.5, 0.5, 0.5]
                               ])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])
        expected_y = np.array([[0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [1., 0., 0.5, 1.],
                               [0.5, 0.5, 0.5, 0.5]
                               ])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-9)

    def test_jacobian(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.],
                           [1., 1.5],
                           [1.5, 1.]
                           ])
        expected_deriv = np.array([
            [[0., -1.], [0., 1.], [0., 0.], [0., -1.]],
            [[-1., 0.], [1., 0.], [0., 0.], [-1., 0.]],
            [[0., 1.], [0., -1.], [0., 0.], [0., 1.]],
            [[1., 0.], [-1., 0.], [0., 0.], [1., 0.]]
            ])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.linearize(x0)
            assert_rel_error(self, mu, y0, 1e-9)
Exemplo n.º 17
0
class TestRBFInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf',
                                         num_neighbors=5)
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.], [1., 0., .5,
                                              1.], [1., 0., .5, 1.],
                           [1., 0., .5, 1.], [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_near_equal(mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5], [0.5, 1.0], [1.0, 1.5], [1.5, 1.],
                           [0., 1.], [.5, .5]])
        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a], [a, b, 0.5, a], [a, b, 0.5, a],
                               [a, b, 0.5, a], [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_near_equal(mu, [y0], 1e-6)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5], [0.5, 1.0], [1.0, 1.5], [1.5, 1.],
                           [0., 1.], [.5, .5]])

        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a], [a, b, 0.5, a], [a, b, 0.5, a],
                               [a, b, 0.5, a], [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]])

        mu = self.surrogate.predict(test_x)
        assert_near_equal(mu, expected_y, 1e-6)

    def test_jacobian(self):
        from distutils.version import LooseVersion
        if LooseVersion(np.__version__) == LooseVersion("1.14"):
            raise unittest.SkipTest("This test doesn't work in numpy 1.14.")

        test_x = np.array([[0.5, 0.5], [0.5, 1.5], [1.5, 1.5], [1.5, 0.5]])
        a = -0.97153433
        b = -0.97153433
        c = 0.59055939
        d = 0.59055939

        expected_deriv = np.array([[[a, b], [c, d], [0., 0.], [a, b]],
                                   [[a, -b], [c, -d], [0., 0.], [a, -b]],
                                   [[-a, -b], [-c, -d], [0., 0.], [-a, -b]],
                                   [[-a, b], [-c, d], [0., 0.], [-a, b]]])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.linearize(x0)
            assert_near_equal(mu, y0, 1e-6)
Exemplo n.º 18
0
class TestRBFInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf', n=5)
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, y0, 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])
        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]
                               ])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, y0, 1e-6)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])

        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]
                               ])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-6)

    def test_jacobian(self):
        test_x = np.array([[0.5, 0.5],
                           [0.5, 1.5],
                           [1.5, 1.5],
                           [1.5, 0.5]
                           ])
        a = -0.97153433
        b = -0.97153433
        c = 0.59055939
        d = 0.59055939

        expected_deriv = np.array([
            [[a, b], [c, d], [0., 0.], [a, b]],
            [[a, -b], [c, -d], [0., 0.], [a, -b]],
            [[-a, -b], [-c, -d], [0., 0.], [-a, -b]],
            [[-a, b], [-c, d], [0., 0.], [-a, b]]
        ])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.jacobian(x0)
            assert_rel_error(self, mu, y0, 1e-6)
Exemplo n.º 19
0
class TestRBFInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf',
                                         num_neighbors=5)
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.], [1., 0., .5,
                                              1.], [1., 0., .5, 1.],
                           [1., 0., .5, 1.], [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5], [0.5, 1.0], [1.0, 1.5], [1.5, 1.],
                           [0., 1.], [.5, .5]])
        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a], [a, b, 0.5, a], [a, b, 0.5, a],
                               [a, b, 0.5, a], [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-6)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5], [0.5, 1.0], [1.0, 1.5], [1.5, 1.],
                           [0., 1.], [.5, .5]])

        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a], [a, b, 0.5, a], [a, b, 0.5, a],
                               [a, b, 0.5, a], [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-6)

    def test_jacobian(self):
        test_x = np.array([[0.5, 0.5], [0.5, 1.5], [1.5, 1.5], [1.5, 0.5]])
        a = -0.97153433
        b = -0.97153433
        c = 0.59055939
        d = 0.59055939

        expected_deriv = np.array([[[a, b], [c, d], [0., 0.], [a, b]],
                                   [[a, -b], [c, -d], [0., 0.], [a, -b]],
                                   [[-a, -b], [-c, -d], [0., 0.], [-a, -b]],
                                   [[-a, b], [-c, d], [0., 0.], [-a, b]]])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.linearize(x0)
            assert_rel_error(self, mu, y0, 1e-6)
Exemplo n.º 20
0
 def setUp(self):
     self.surrogate = NearestNeighbor(interpolant_type='rbf',
                                      num_neighbors=4)
     self.x = np.array([[0.], [1.], [2.], [3.]])
     self.y = np.array([[0.], [2.], [2.], [0.]])
     self.surrogate.train(self.x, self.y)
Exemplo n.º 21
0
class TestWeightedInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='weighted')
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [1.], [1.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_insufficient_points(self):
        with self.assertRaises(ValueError) as cm:
            self.surrogate.predict(self.x[0], num_neighbors=100)

        expected_msg = (
            'WeightedInterpolant does not have sufficient '
            'training data to use num_neighbors=100, only 4 points available.')

        self.assertEqual(str(cm.exception), expected_msg)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0, num_neighbors=3)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.52631579], [0.94736842], [0.52631579]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0, num_neighbors=3)
            assert_rel_error(self, mu, [y0], 1e-8)

    def test_bulk_prediction(self):

        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.52631579], [0.94736842], [0.52631579]])

        mu = self.surrogate.predict(test_x, num_neighbors=3)
        assert_rel_error(self, mu, expected_y, 1e-8)

    def test_jacobian(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_deriv = np.array([[1.92797784], [0.06648199], [-1.92797784]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.linearize(x0, num_neighbors=3)
            assert_rel_error(self, jac, [y0], 1e-6)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x, num_neighbors=3)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.linearize(test_x, num_neighbors=3)

        assert_rel_error(self, mu, np.array([[1.92797784]]), 1e-6)
Exemplo n.º 22
0
class TestWeightedInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='weighted')
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [1.], [1.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_insufficient_points(self):
        with self.assertRaises(ValueError) as cm:
            self.surrogate.predict(self.x[0], num_neighbors=100)

        expected_msg = ('WeightedInterpolant does not have sufficient '
            'training data to use num_neighbors=100, only 4 points available.')

        self.assertEqual(str(cm.exception), expected_msg)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0, num_neighbors=3)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.52631579], [0.94736842], [0.52631579]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0, num_neighbors=3)
            assert_rel_error(self, mu, [y0], 1e-8)

    def test_bulk_prediction(self):

        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.52631579], [0.94736842], [0.52631579]])

        mu = self.surrogate.predict(test_x, num_neighbors=3)
        assert_rel_error(self, mu, expected_y, 1e-8)

    def test_jacobian(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_deriv = np.array([[1.92797784], [0.06648199], [-1.92797784]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.linearize(x0, num_neighbors=3)
            assert_rel_error(self, jac, [y0], 1e-6)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x, num_neighbors=3)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.linearize(test_x, num_neighbors=3)

        assert_rel_error(self, mu, np.array([[1.92797784]]), 1e-6)
Exemplo n.º 23
0
class TestWeightedInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='weighted')
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])
        a = ((16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.))) /
             (16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)) + 8.))

        b = 8. / (8. + 16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)))
        c = (2. + 2. / (5. * np.sqrt(5))) / (3. + 2. / (5. * np.sqrt(5)))
        d = 1. / (3. + 2. / (5. * np.sqrt(5)))

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.54872067, 0.45127933, 0.5, 0.54872067]
                               ])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0, num_neighbors=5, dist_eff=3)
            assert_rel_error(self, mu, [y0], 1e-6)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])

        a = ((16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.))) /
             (16./(5*np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)) + 8.))
        b = 8. / (8. + 16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)))
        c = (2. + 2./(5.*np.sqrt(5))) / (3. + 2. / (5. * np.sqrt(5)))
        d = 1. / (3. + 2. / (5. * np.sqrt(5)))

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.54872067, 0.45127933, 0.5, 0.54872067]
                               ])

        mu = self.surrogate.predict(test_x, num_neighbors=5, dist_eff=3)
        assert_rel_error(self, mu, expected_y, 1e-6)

    def test_jacobian(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.],
                           [1., 1.5],
                           [1.5, 1.]
                           ])
        a = 0.99511746
        expected_deriv = np.array([
            [[0., -a], [0., a], [0., 0.], [0., -a]],
            [[-a, 0], [a, 0.], [0., 0.], [-a, 0]],
            [[0., a], [0., -a], [0., 0.], [0., a]],
            [[a, 0.], [-a, 0.], [0., 0.], [a, 0.]]
        ])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.linearize(x0)
            assert_rel_error(self, mu, y0, 1e-6)
Exemplo n.º 24
0
 def setUp(self):
     self.surrogate = NearestNeighbor(interpolant_type='rbf', num_neighbors=4)
     self.x = np.array([[0.], [1.], [2.], [3.]])
     self.y = np.array([[0.], [2.], [2.], [0.]])
     self.surrogate.train(self.x, self.y)
Exemplo n.º 25
0
class TestRBFInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf', num_neighbors=5)
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])
        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]
                               ])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-6)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])

        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]
                               ])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-6)

    def test_jacobian(self):
        from distutils.version import LooseVersion
        if LooseVersion(np.__version__) >= LooseVersion("1.14"):
            raise unittest.SkipTest("This test doesn't work in numpy 1.14.")

        test_x = np.array([[0.5, 0.5],
                           [0.5, 1.5],
                           [1.5, 1.5],
                           [1.5, 0.5]
                           ])
        a = -0.97153433
        b = -0.97153433
        c = 0.59055939
        d = 0.59055939

        expected_deriv = np.array([
            [[a, b], [c, d], [0., 0.], [a, b]],
            [[a, -b], [c, -d], [0., 0.], [a, -b]],
            [[-a, -b], [-c, -d], [0., 0.], [-a, -b]],
            [[-a, b], [-c, d], [0., 0.], [-a, b]]
        ])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.linearize(x0)
            assert_rel_error(self, mu, y0, 1e-6)