Exemplo n.º 1
0
class Turbine:
    """ This class provides a configuration file loading for the whole turbine environment,
    plus manipulation of the active elements of the turbine (robot/rail)
    and their interacting (collision)

    Args:
        config: (TurbineConfig) configuration file object.
    """

    env = None
    config = None

    # std names for printing propouses
    std_name = {
        _PRIMARY_RAIL: "primary rail",
        _SECONDARY_RAIL: "secondary rail",
        _BLADE: "blade",
        _RUNNER_AREA: "runner area",
        _IRIS: "iris",
        _ROTOR: "rotor"
    }

    def __init__(self, config):
        self.config = config

        # Create OpenRave environment
        RaveInitialize(True, 0)
        self.env = Environment()
        self.env.Load(config.environment.load)
        self.robot = self.env.GetRobots()[0]
        self.manipulator = self.robot.GetActiveManipulator()

        ikmodel = databases.inversekinematics.InverseKinematicsModel(
            robot=self.robot, iktype=IkParameterization.Type.Transform6D)
        if not ikmodel.load():
            ikmodel.autogenerate()

        # Principal turbine elements linked to attributes
        self.bodies = self.env.GetBodies()

        try:
            self.rotor = next(body for body in self.bodies
                              if body.GetName() == _ROTOR)
        except StopIteration:
            raise XMLStructError(_ROTOR)

        try:
            self.iris = next(body for body in self.bodies
                             if body.GetName() == _IRIS)
        except StopIteration:
            raise XMLStructError(_IRIS)

        try:
            self.runner_area = next(body for body in self.bodies
                                    if body.GetName() == _RUNNER_AREA)
        except StopIteration:
            raise XMLStructError(_RUNNER_AREA)

        try:
            self.primary = next(body for body in self.bodies
                                if body.GetName() == _PRIMARY_RAIL)
        except StopIteration:
            raise XMLStructError(_PRIMARY_RAIL)

        try:
            self.secondary = next(body for body in self.bodies
                                  if body.GetName() == _SECONDARY_RAIL)
        except StopIteration:
            raise XMLStructError(_SECONDARY_RAIL)

        blade_number = 1
        try:
            self.blades = [
                next(body for body in self.bodies
                     if body.GetName() == _BLADE + str(blade_number))
            ]
        except StopIteration:
            raise XMLStructError(_BLADE + str(blade_number))

        blade_found = True
        while blade_found:
            blade_number += 1
            try:
                self.blades.append(
                    next(body for body in self.bodies
                         if body.GetName() == _BLADE + str(blade_number)))
            except StopIteration:
                blade_found = False

    def place_rail(self, rail_place):
        """ Place both rails in the environment
        Args:
            rail_place: (RailPlace) rail object.
        """

        # P - primary rail,
        # S - secondary rail,
        # alpha - angle from the perpendicular to the primary rail
        # Using camera standard axis and transformLookat for rails

        # Primary Rail

        primary_extent = self.primary.GetLinks()[0].GetGeometries(
        )[0].GetBoxExtents()
        primary_offset = array([
            0, -primary_extent[1], -primary_extent[2]
        ]) + array([0, 0, self.config.environment.primary_safe_margin])
        primary_offset_transform = eye(4)
        primary_offset_transform[0:3, 3] = primary_offset

        # Secondary Rail
        secondary_extent = self.secondary.GetLinks()[0].GetGeometries(
        )[0].GetBoxExtents()
        # Resizing
        secondary_extent[2] = abs(
            rail_place.s) / 2.0 + self.config.environment.secondary_safe_margin
        self.env.Remove(self.secondary)
        self.secondary.InitFromBoxes(
            array([concatenate([zeros(3), secondary_extent])]), True)
        self.env.AddKinBody(self.secondary)
        #
        secondary_offset = array(
            [0, -secondary_extent[1], secondary_extent[2]]) + array([
                0, self.config.environment.robot_level_difference,
                -self.config.environment.secondary_safe_margin
            ])
        secondary_offset_transform = eye(4)
        secondary_offset_transform[0:3, 3] = secondary_offset

        # Rails Traonsform and Placement
        primary_transform = transformLookat(
            array([0, 0, self.config.environment.z_floor_level]),
            array([rail_place.p, 0, self.config.environment.z_floor_level]),
            [0, 0, 1])
        self.primary.SetTransform(
            dot(primary_transform, primary_offset_transform))

        secondary_transform = transformLookat(
            rail_place.getXYZ(self.config),
            array([rail_place.p, 0, self.config.environment.z_floor_level]),
            [0, 0, 1])
        self.secondary.SetTransform(
            dot(secondary_transform, secondary_offset_transform))

    def check_rail_collision(self):
        """ Check rail <-> blades collision """
        with self.env:
            collisions = [
                self.env.CheckCollision(self.primary, blade)
                or self.env.CheckCollision(self.secondary, blade)
                for blade in self.blades
            ]
        return any(collisions)

    def place_robot(self, rail_place):
        """ Place robot on the end of the secondary rail """
        T = rail_place.getTransform(self.config)
        self.robot.SetTransform(T)

    def check_robotbase_collision(self):
        """ Check robot's base <-> environment collision """
        with self.robot:
            for link in self.robot.GetLinks():
                link.Enable(False)
            self.robot.GetLink('Base').Enable(True)
            self.robot.GetLink('Arm0').Enable(True)
            with self.env:
                collision_base = [(self.env.CheckCollision(self.robot, body)
                                   and not (body == self.robot))
                                  for body in self.bodies]

            collisions = collision_base

        return any(collisions)

    def check_robot_collision(self):
        """ Check robot <-> environment collision """
        collisions = [(self.env.CheckCollision(self.robot, body)
                       and not (body == self.robot)) for body in self.bodies]
        return any(collisions)
class ProblemEnvironment:
    def __init__(self, problem_idx):
        np.random.seed(problem_idx)
        random.seed(problem_idx)
        self.env = Environment()
        collisionChecker = openravepy.RaveCreateCollisionChecker(
            self.env, 'fcl_')
        self.env.SetCollisionChecker(collisionChecker)
        self.problem_idx = problem_idx

        self.initial_placements = []
        self.placements = []
        self.robot = None
        self.objects = None
        self.curr_state = None
        self.curr_obj = None
        self.init_saver = None
        self.init_which_opreator = None
        self.v = False
        self.robot_region = None
        self.obj_region = None
        self.objs_to_move = None
        self.problem_config = None
        self.init_objs_to_move = None
        self.optimal_score = None
        self.name = None

        self.is_solving_packing = False
        self.is_solving_namo = False
        self.is_solving_fetching = False

        self.high_level_planner = None
        self.namo_planner = None
        self.fetch_planner = None
        self.env.StopSimulation()  # openrave crashes with physics engine on
        self.motion_planner = None

    def set_body_poses(self, poses):
        for body_name, body_pose in zip(poses.keys(), poses.values()):
            utils.set_obj_xytheta(body_pose, self.env.GetKinBody(body_name))

    def set_motion_planner(self, motion_planner):
        self.motion_planner = motion_planner

    def make_config_from_op_instance(self, op_instance):
        if op_instance['operator'].find('one_arm') != -1:
            g_config = op_instance['action']['g_config']
            base_pose = op_instance['action']['base_pose']
            config = np.hstack([g_config, base_pose.squeeze()])
        else:
            config = op_instance['action']['base_pose']

        return config.squeeze()

    def reset_to_init_state_stripstream(self):
        # todo check if this works
        self.init_saver.Restore()
        self.robot.SetActiveDOFs([], DOFAffine.X | DOFAffine.Y
                                 | DOFAffine.RotationAxis, [0, 0, 1])

    def enable_movable_objects(self):
        for obj in self.objects:
            obj.Enable(True)

    def disable_movable_objects(self):
        if len(self.robot.GetGrabbed()) > 0:
            held_obj = self.robot.GetGrabbed()[0]
        else:
            held_obj = None

        for obj in self.objects:
            if obj == held_obj:
                continue
            obj.Enable(False)

    def get_curr_object(self):
        return self.curr_obj

    def get_placements(self):
        return copy.deepcopy(self.placements)

    def get_state(self):
        return 1

    def is_pick_time(self):
        return len(self.robot.GetGrabbed()) == 0

    def check_action_feasible(self,
                              action,
                              do_check_reachability=True,
                              region_name=None):
        action = action.reshape((1, action.shape[-1]))
        place_robot_pose = action[0, 0:3]

        if not self.is_collision_at_base_pose(place_robot_pose):
            if do_check_reachability:
                # define the region to stay in?
                path, status = self.check_reachability(place_robot_pose,
                                                       region_name)
                if status == "HasSolution":
                    return path, True
                else:
                    return None, False
            else:
                return None, True
        else:
            return None, False

    def is_collision_at_base_pose(self, base_pose, obj=None):
        robot = self.robot
        env = self.env
        if obj is None:
            obj_holding = self.curr_obj
        else:
            obj_holding = obj
        with robot:
            set_robot_config(base_pose, robot)
            in_collision = check_collision_except(obj_holding, env)
        if in_collision:
            return True
        return False

    def is_in_region_at_base_pose(self, base_pose, obj, robot_region,
                                  obj_region):
        robot = self.robot
        if obj is None:
            obj_holding = self.curr_obj
        else:
            obj_holding = obj

        with robot:
            set_robot_config(base_pose, robot)
            in_region = (robot_region.contains(robot.ComputeAABB())) and \
                        (obj_region.contains(obj_holding.ComputeAABB()))
        return in_region

    def apply_operator_instance(self, plan, check_feasibility=True):
        raise NotImplementedError

    def get_region_containing(self, obj):
        containing_regions = []
        for r in self.regions.values():
            if r.name == 'entire_region':
                continue
            if r.contains(obj.ComputeAABB()):
                containing_regions.append(r)

        if len(containing_regions) == 0:
            return None
        elif len(containing_regions) == 1:
            return containing_regions[0]
        else:
            region_with_smallest_area = containing_regions[0]
            for r in containing_regions:
                if r.area() < region_with_smallest_area.area():
                    region_with_smallest_area = r
            return region_with_smallest_area

    def apply_pick_constraint(self,
                              obj_name,
                              pick_config,
                              pick_base_pose=None):
        # todo I think this function can be removed?
        obj = self.env.GetKinBody(obj_name)
        if pick_base_pose is not None:
            set_robot_config(pick_base_pose, self.robot)
        self.robot.SetDOFValues(pick_config)
        grab_obj(self.robot, obj)

    def is_region_contains_all_objects(self, region, objects):
        return np.all([region.contains(obj.ComputeAABB()) for obj in objects])

    def get_objs_in_collision(self, path, region_name):
        if path is None:
            return []
        if len(path) == 0:
            return []
        if not isinstance(path, list):
            path = [path]
        if len(path[0]) == 3:
            self.robot.SetActiveDOFs([], DOFAffine.X | DOFAffine.Y
                                     | DOFAffine.RotationAxis, [0, 0, 1])
        elif len(path[0]) == 11:
            manip = self.robot.GetManipulator('rightarm_torso')
            self.robot.SetActiveDOFs(
                manip.GetArmIndices(),
                DOFAffine.X | DOFAffine.Y | DOFAffine.RotationAxis, [0, 0, 1])
        assert len(path[0]) == self.robot.GetActiveDOF(
        ), 'Robot active dof should match the path'
        objs = self.get_objs_in_region(region_name)
        in_collision = []
        with self.robot:
            for conf in path:
                set_active_config(conf, self.robot)
                if self.env.CheckCollision(self.robot):
                    for obj in objs:
                        if self.env.CheckCollision(
                                self.robot, obj) and obj not in in_collision:
                            in_collision.append(obj)
        return in_collision

    def disable_objects_in_region(self, region_name):
        raise NotImplementedError

    def enable_objects_in_region(self, region_name):
        raise NotImplementedError

    def get_applicable_ops(self):
        raise NotImplementedError

    def apply_pick_action(self, action, obj=None):
        raise NotImplementedError

    def update_next_obj_to_pick(self, place_action):
        raise NotImplementedError

    def apply_place_action(self, action, do_check_reachability=True):
        raise NotImplementedError

    def remove_all_obstacles(self):
        raise NotImplementedError

    def is_goal_reached(self):
        raise NotImplementedError

    def set_init_state(self, saver):
        raise NotImplementedError

    def replay_plan(self, plan):
        raise NotImplementedError

    def which_operator(self, obj):
        raise NotImplementedError

    def restore(self, state_saver):
        raise NotImplementedError
Exemplo n.º 3
0
class ProblemEnvironment:
    def __init__(self, problem_idx):
        self.env = Environment()
        self.initial_placements = []
        self.placements = []
        self.objects_currently_not_in_goal = []
        self.robot = None
        self.objects = None
        self.curr_state = None
        self.curr_obj = None
        self.init_saver = None
        self.init_which_opreator = None
        self.v = False
        self.robot_region = None
        self.obj_region = None
        self.objs_to_move = None
        self.problem_config = None
        self.init_objs_to_move = None
        self.optimal_score = None
        self.name = None

        self.is_solving_packing = False
        self.is_solving_namo = False
        self.is_solving_fetching = False

        self.high_level_planner = None
        self.namo_planner = None
        self.fetch_planner = None
        self.infeasible_reward = -2
        self.regions = {}
        self.env.StopSimulation()
        self.problem_idx = problem_idx
        self.prev_object_picked = None

    def apply_action_and_get_reward(self, operator_instance, is_op_feasible,
                                    node):
        raise NotImplementedError

    def compute_place_reward(self, operator_instance):
        raise NotImplementedError

    @staticmethod
    def check_parameter_feasibility_precondition(operator_instance):
        if not operator_instance.continuous_parameters['is_feasible']:
            return False
        else:
            return True

    def check_reachability_precondition(self, operator_instance):
        motion_planning_region_name = 'entire_region'
        goal_robot_xytheta = operator_instance.continuous_parameters[
            'base_pose']

        if operator_instance.low_level_motion is not None:
            motion = operator_instance.low_level_motion
            status = 'HasSolution'
            return motion, status

        motion, status = self.get_base_motion_plan(
            goal_robot_xytheta, motion_planning_region_name)
        return motion, status

    def apply_operator_instance(self, operator_instance, node):
        if not self.check_parameter_feasibility_precondition(
                operator_instance):
            operator_instance.update_low_level_motion(None)
            return self.infeasible_reward

        motion_plan, status = self.check_reachability_precondition(
            operator_instance)
        operator_instance.update_low_level_motion(motion_plan)
        reward = self.apply_action_and_get_reward(operator_instance, status,
                                                  node)
        return reward

    def set_objects_not_in_goal(self, objects_not_in_goal):
        self.objects_currently_not_in_goal = objects_not_in_goal

    def get_objs_in_region(self, region_name):
        movable_objs = self.objects
        objs_in_region = []
        for obj in movable_objs:
            if self.regions[region_name].contains(obj.ComputeAABB()):
                objs_in_region.append(obj)
        return objs_in_region

    def make_config_from_op_instance(self, op_instance):
        if op_instance['operator'].find('one_arm') != -1:
            g_config = op_instance['action']['g_config']
            base_pose = op_instance['action']['base_pose']
            config = np.hstack([g_config, base_pose.squeeze()])
        else:
            config = op_instance['action']['base_pose']

        return config.squeeze()

    def reset_to_init_state(self, node):
        raise NotImplementedError

    def enable_movable_objects(self):
        for obj in self.objects:
            obj.Enable(True)

    def disable_movable_objects(self):
        for obj in self.objects:
            obj.Enable(False)

    def get_curr_object(self):
        return self.curr_obj

    def get_placements(self):
        return copy.deepcopy(self.placements)

    def get_state(self):
        return 1

    def is_pick_time(self):
        return len(self.robot.GetGrabbed()) == 0

    def check_action_feasible(self,
                              action,
                              do_check_reachability=True,
                              region_name=None):
        action = action.reshape((1, action.shape[-1]))
        place_robot_pose = action[0, 0:3]

        if not self.is_collision_at_base_pose(place_robot_pose):
            if do_check_reachability:
                # define the region to stay in?
                path, status = self.check_reachability(place_robot_pose,
                                                       region_name)
                if status == "HasSolution":
                    return path, True
                else:
                    return None, False
            else:
                return None, True
        else:
            return None, False

    def is_collision_at_base_pose(self, base_pose, obj=None):
        robot = self.robot
        env = self.env
        if obj is None:
            obj_holding = self.curr_obj
        else:
            obj_holding = obj
        with robot:
            set_robot_config(base_pose, robot)
            in_collision = check_collision_except(obj_holding, env)
        if in_collision:
            return True
        return False

    def is_in_region_at_base_pose(self, base_pose, obj, robot_region,
                                  obj_region):
        robot = self.robot
        if obj is None:
            obj_holding = self.curr_obj
        else:
            obj_holding = obj

        with robot:
            set_robot_config(base_pose, robot)
            in_region = (robot_region.contains(robot.ComputeAABB())) and \
                        (obj_region.contains(obj_holding.ComputeAABB()))
        return in_region

    def get_motion_plan(self, q_init, goal, d_fn, s_fn, e_fn, c_fn,
                        n_iterations):
        for n_iter in n_iterations:
            path = rrt_connect(q_init,
                               goal,
                               d_fn,
                               s_fn,
                               e_fn,
                               c_fn,
                               iterations=n_iter)
            if path is not None:
                print "Found solution at iteration ", n_iter
                path = smooth_path(path, e_fn, c_fn)
                return path, "HasSolution"
        return None, 'NoSolution'

    def get_arm_base_motion_plan(self,
                                 goal,
                                 region_name=None,
                                 manip_name=None):
        if region_name is None:
            d_fn = arm_base_distance_fn(self.robot, 2.51, 2.51)
            s_fn = arm_base_sample_fn(self.robot, 2.51, 2.51)
        else:
            region_x = self.problem_config[region_name + '_xy'][0]
            region_y = self.problem_config[region_name + '_xy'][1]
            region_x_extents = self.problem_config[region_name + '_extents'][0]
            region_y_extents = self.problem_config[region_name + '_extents'][1]
            d_fn = arm_base_distance_fn(self.robot, region_x_extents,
                                        region_y_extents)
            s_fn = arm_base_sample_fn(self.robot, region_x_extents,
                                      region_y_extents, region_x, region_y)
        e_fn = arm_base_extend_fn(self.robot)
        c_fn = collision_fn(self.env, self.robot)

        if manip_name is not None:
            manip = self.robot.GetManipulator(manip_name)
        else:
            manip = self.robot.GetManipulator('rightarm_torso')
        self.robot.SetActiveDOFs(
            manip.GetArmIndices(),
            DOFAffine.X | DOFAffine.Y | DOFAffine.RotationAxis, [0, 0, 1])

        q_init = self.robot.GetActiveDOFValues()
        n_iterations = [20, 50, 100, 500, 1000]
        print 'Arm base motion planning...'
        path, status = self.get_motion_plan(q_init, goal, d_fn, s_fn, e_fn,
                                            c_fn, n_iterations)
        return path, status

    def get_base_motion_plan(self, goal, region_name=None, n_iterations=None):
        self.robot.SetActiveDOFs([], DOFAffine.X | DOFAffine.Y
                                 | DOFAffine.RotationAxis, [0, 0, 1])
        if region_name is None:
            assert self.name == 'convbelt'
            d_fn = base_distance_fn(self.robot, x_extents=3.9, y_extents=7.1)
            #s_fn = base_sample_fn(self.robot, x_extents=4.6, y_extents=5, x=-2.8, y=-3)
            s_fn = base_sample_fn(self.robot,
                                  x_extents=2.4,
                                  y_extents=5,
                                  x=-1,
                                  y=-3)
            #smpls = [s_fn() for i in range(100)]
            #visualize_path(self.robot, smpls)
            #import pdb;pdb.set_trace()
        else:
            region_x = self.problem_config[region_name + '_xy'][0]
            region_y = self.problem_config[region_name + '_xy'][1]
            region_x_extents = self.problem_config[region_name + '_extents'][0]
            region_y_extents = self.problem_config[region_name + '_extents'][1]
            d_fn = base_distance_fn(self.robot,
                                    x_extents=region_x_extents,
                                    y_extents=region_y_extents)
            s_fn = base_sample_fn(self.robot,
                                  x_extents=region_x_extents,
                                  y_extents=region_y_extents,
                                  x=region_x,
                                  y=region_y)
        e_fn = base_extend_fn(self.robot)
        c_fn = collision_fn(self.env, self.robot)
        q_init = self.robot.GetActiveDOFValues()

        if n_iterations is None:
            n_iterations = [20, 50, 100, 500, 1000]

        print "Base motion planning..."
        path, status = self.get_motion_plan(q_init, goal, d_fn, s_fn, e_fn,
                                            c_fn, n_iterations)
        print "Status,", status
        return path, status

    def get_arm_motion_plan(self, goal, manip_name=None):
        if manip_name is not None:
            manip = self.robot.GetManipulator(manip_name)
        else:
            manip = self.robot.GetManipulator('rightarm_torso')
        self.robot.SetActiveDOFs(manip.GetArmIndices())

        d_fn = distance_fn(self.robot)
        s_fn = sample_fn(self.robot)
        e_fn = extend_fn(self.robot)
        c_fn = collision_fn(self.env, self.robot, check_self=True)

        q_init = self.robot.GetActiveDOFValues()
        n_iterations = [20, 50, 100, 500, 1000]
        print "Arm motion planning..."
        path, status = self.get_motion_plan(q_init, goal, d_fn, s_fn, e_fn,
                                            c_fn, n_iterations)
        return path, status

    def get_region_containing(self, obj):
        return self.regions['entire_region']

    def is_region_contains_all_objects(self, region, objects):
        return np.all([region.contains(obj.ComputeAABB()) for obj in objects])

    def get_objs_in_collision(self, path, region_name):
        assert len(path[0]) == self.robot.GetActiveDOF(
        ), 'Robot active dof should match the path'
        objs = self.get_objs_in_region(region_name)
        in_collision = []
        with self.robot:
            for conf in path:
                set_active_dof_conf(conf, self.robot)
                #set_robot_config(conf, self.robot)
                if self.env.CheckCollision(self.robot):
                    for obj in objs:
                        if self.env.CheckCollision(
                                self.robot, obj) and obj not in in_collision:
                            in_collision.append(obj)
        return in_collision

    def disable_objects_in_region(self):
        for object in self.objects:
            object.Enable(False)

    def enable_objects_in_region(self):
        for object in self.objects:
            object.Enable(True)

    def disable_objects(self):
        for object in self.objects:
            if object is None:
                continue
            object.Enable(False)

    def enable_objects(self):
        for object in self.objects:
            if object is None:
                continue
            object.Enable(True)

    def remove_all_obstacles(self):
        raise NotImplementedError

    def is_goal_reached(self):
        raise NotImplementedError

    def set_init_state(self, saver):
        raise NotImplementedError

    def which_operator(self, obj=None):
        if self.is_pick_time():
            return 'two_arm_pick'
        else:
            return 'two_arm_place'

    def restore(self, state_saver):
        raise NotImplementedError