Exemplo n.º 1
0
    def _build_shared_graph(self):

        with tf.variable_scope(self._scope, reuse=self._reuse):

            _encoder = MultiLayerFC(l2_reg=self._l2_reg,
                                    in_tensor=self._in_tensor,
                                    dims=self._dims[1:],
                                    scope='encoder',
                                    dropout_in=self._dropout,
                                    dropout_mid=self._dropout,
                                    reuse=self._reuse)
            _decoder = MultiLayerFC(l2_reg=self._l2_reg,
                                    in_tensor=_encoder.get_outputs()[0],
                                    dims=self._dims[::-1][1:],
                                    scope='decoder',
                                    relu_in=True,
                                    dropout_in=self._dropout,
                                    relu_mid=True,
                                    dropout_mid=self._dropout,
                                    relu_out=True,
                                    dropout_out=self._dropout,
                                    reuse=self._reuse)

            self._outputs += _encoder.get_outputs()
            self._loss = _encoder.get_loss() + _decoder.get_loss()
            self._loss += self._l2_reconst * tf.nn.l2_loss(
                _decoder.get_outputs()[0] - self._in_tensor)
Exemplo n.º 2
0
    def _build_serving_graph(self):

        with tf.variable_scope(self._scope, reuse=self._reuse):
            if self._batch_serving:
                user_rep = tf.reshape(
                    tf.tile(self._user, [1, tf.shape(self._item)[0]]),
                    (-1, tf.shape(self._user)[1]))
                item_rep = tf.tile(self._item, (tf.shape(self._user)[0], 1))
                if self._extra is not None:
                    extra_rep = tf.tile(self._extra,
                                        (tf.shape(self._user)[0], 1))
                    in_tensor = tf.concat([user_rep, item_rep, extra_rep],
                                          axis=1)
                else:
                    in_tensor = tf.concat([user_rep, item_rep], axis=1)
                reg = MultiLayerFC(in_tensor=in_tensor,
                                   dims=self._dims,
                                   bias_in=True,
                                   bias_mid=True,
                                   bias_out=False,
                                   l2_reg=self._l2_reg,
                                   scope='mlp_reg',
                                   reuse=self._reuse)
                if self._item_bias is not None:
                    item_bias_rep = tf.tile(self._item_bias,
                                            (tf.shape(self._user)[0], 1))
                    self._outputs.append(
                        tf.reshape(reg.get_outputs()[0] + item_bias_rep,
                                   (tf.shape(self._user)[0],
                                    tf.shape(self._item)[0])))
                else:
                    self._outputs.append(
                        tf.reshape(reg.get_outputs()[0], (tf.shape(
                            self._user)[0], tf.shape(self._item)[0])))
            else:
                if self._extra is not None:
                    in_tensor = tf.concat(
                        [self._user, self._item, self._extra], axis=1)
                else:
                    in_tensor = tf.concat([self._user, self._item], axis=1)
                reg = MultiLayerFC(in_tensor=in_tensor,
                                   dims=self._dims,
                                   bias_in=True,
                                   bias_mid=True,
                                   bias_out=False,
                                   l2_reg=self._l2_reg,
                                   scope='mlp_reg',
                                   reuse=self._reuse)
                logits = reg.get_outputs()[0]
                if self._item_bias is not None:
                    logits += self._item_bias
                self._outputs.append(tf.sigmoid(logits))
Exemplo n.º 3
0
    def _build_shared_graph(self):

        with tf.variable_scope(self._scope, reuse=self._reuse):

            self._embedding = tf.get_variable('embedding',
                                              dtype=tf.float32,
                                              shape=self._shape,
                                              trainable=False,
                                              initializer=self._initializer)

            self._flag = tf.get_variable('flag',
                                         dtype=tf.bool,
                                         shape=[self._shape[0]],
                                         trainable=False,
                                         initializer=tf.constant_initializer(
                                             value=False, dtype=tf.bool))
            unique_ids, _ = tf.unique(self._ids)

            with tf.control_dependencies([
                    tf.scatter_update(self._flag, unique_ids,
                                      tf.ones_like(unique_ids, dtype=tf.bool))
            ]):
                trans_embedding = MultiLayerFC(
                    in_tensor=tf.nn.embedding_lookup(self._embedding,
                                                     self._ids),
                    dims=self._mlp_dims,
                    batch_norm=True,
                    scope=self._scope + '/MLP',
                    train=self._train,
                    reuse=self._reuse,
                    l2_reg=self._l2_reg,
                    relu_out=True)

            self._outputs += trans_embedding.get_outputs()
            self._loss += trans_embedding.get_loss()

            update_ids = tf.reshape(tf.where(self._flag), [-1])
            update_embedding = MultiLayerFC(in_tensor=tf.nn.embedding_lookup(
                self._embedding, update_ids),
                                            dims=self._mlp_dims,
                                            batch_norm=True,
                                            scope=self._scope + '/MLP',
                                            train=False,
                                            reuse=True,
                                            l2_reg=self._l2_reg,
                                            relu_out=True)
            self._update_node = tf.scatter_update(
                self._embedding, update_ids,
                update_embedding.get_outputs()[0])
            self._clear_flag = tf.scatter_update(
                self._flag, update_ids, tf.zeros_like(update_ids,
                                                      dtype=tf.bool))
Exemplo n.º 4
0
    def _build_training_graph(self):

        with tf.variable_scope(self._scope, reuse=self._reuse):

            if self._extra is not None:
                in_tensor = tf.concat([self._user, self._item, self._extra],
                                      axis=1)
            else:
                in_tensor = tf.concat([self._user, self._item], axis=1)

            reg = MultiLayerFC(in_tensor=in_tensor,
                               dims=self._dims,
                               bias_in=True,
                               bias_mid=True,
                               bias_out=False,
                               dropout_mid=self._dropout,
                               l2_reg=self._l2_reg,
                               scope='mlp_reg',
                               reuse=self._reuse)

            logits = reg.get_outputs()[0]
            if self._item_bias is not None:
                logits += self._item_bias

            labels_float = tf.reshape(tf.to_float(self._labels), (-1, 1))
            self._loss = tf.reduce_sum(
                tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_float,
                                                        logits=logits))
            self._outputs.append(logits)
Exemplo n.º 5
0
    def _build_serving_graph(self):
        
        with tf.variable_scope(self._scope, reuse=self._reuse):
            user_rep = tf.reshape(tf.tile(self._user, [1, tf.shape(self._item)[0]]), (-1, tf.shape(self._user)[1]))
            item_rep = tf.tile(self._item, (tf.shape(self._user)[0], 1))
            item_bias_rep = tf.tile(self._item_bias, (tf.shape(self._user)[0], 1))
            in_tensor = tf.concat([user_rep, item_rep], axis=1)
            reg = MultiLayerFC(
                in_tensor=in_tensor,
                dims=self._dims,
                bias_in=True,
                bias_mid=True,
                bias_out=False,
                l2_reg=self._l2_reg,
                scope='mlp_reg',
                reuse=self._reuse)

            self._outputs.append(tf.reshape(reg.get_outputs()[0] + item_bias_rep, (tf.shape(self._user)[0], tf.shape(self._item)[0])))
Exemplo n.º 6
0
    def _build_training_graph(self):

        with tf.variable_scope(self._scope, reuse=self._reuse):
            pointwise_product = tf.multiply(self._user, self._item)
            gdp = MultiLayerFC(in_tensor=pointwise_product,
                               dims=[1],
                               bias_in=False,
                               bias_mid=False,
                               bias_out=False,
                               l2_reg=self._l2_reg,
                               scope='gmf_reg',
                               reuse=self._reuse)

            logits = gdp.get_outputs()[0] + self._item_bias
            labels_float = tf.reshape(tf.to_float(self._labels), (-1, 1))
            self._loss = tf.reduce_sum(
                tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_float,
                                                        logits=logits))
            self._outputs.append(logits)
Exemplo n.º 7
0
    def _build_serving_graph(self):

        with tf.variable_scope(self._scope, reuse=self._reuse):
            user_rep = tf.reshape(
                tf.tile(self._user, [1, tf.shape(self._item)[0]]),
                (-1, tf.shape(self._user)[1]))
            item_rep = tf.tile(self._item, (tf.shape(self._user)[0], 1))
            item_bias_rep = tf.tile(self._item_bias,
                                    (tf.shape(self._user)[0], 1))
            pointwise_product = tf.multiply(user_rep, item_rep)
            gdp = MultiLayerFC(in_tensor=pointwise_product,
                               dims=[1],
                               bias_in=False,
                               bias_mid=False,
                               bias_out=False,
                               l2_reg=self._l2_reg,
                               scope='gmf_reg',
                               reuse=self._reuse)
            self._outputs.append(
                tf.reshape(gdp.get_outputs()[0] + item_bias_rep,
                           (tf.shape(self._user)[0], tf.shape(self._item)[0])))
Exemplo n.º 8
0
    def _build_training_graph(self):

        with tf.variable_scope(self._scope, reuse=self._reuse):

            if self._mlp_pretrain:
                self._pretrain_input = tf.placeholder(tf.float32,
                                                      shape=(32,
                                                             self._shape[1]),
                                                      name='pretrain_input')
                trans_embedding = MultiLayerFC(in_tensor=self._pretrain_input,
                                               dims=self._mlp_dims,
                                               batch_norm=True,
                                               scope=self._scope + '/MLP',
                                               train=True,
                                               reuse=True,
                                               l2_reg=self._l2_reg,
                                               relu_out=True)
                identity_loss = tf.nn.l2_loss(
                    trans_embedding.get_outputs()[0] - self._pretrain_input)
                self._pretrain_ops = tf.train.AdamOptimizer(
                    learning_rate=0.001).minimize(identity_loss)