Exemplo n.º 1
0
def extract_features_hahog(
        image: np.ndarray, config: Dict[str, Any],
        features_count: int) -> Tuple[np.ndarray, np.ndarray]:
    t = time.time()
    points, desc = pyfeatures.hahog(
        image.astype(np.float32) /
        255,  # VlFeat expects pixel values between 0, 1
        peak_threshold=config["hahog_peak_threshold"],
        edge_threshold=config["hahog_edge_threshold"],
        target_num_features=features_count,
        use_adaptive_suppression=config["feature_use_adaptive_suppression"],
    )

    if config["feature_root"]:
        desc = np.sqrt(desc)
        uchar_scaling = 362  # x * 512 < 256  =>  sqrt(x) * 362 < 256
    else:
        uchar_scaling = 512

    if config["hahog_normalize_to_uchar"]:
        # pyre-fixme [16]: `int` has no attribute `clip`
        desc = (uchar_scaling * desc).clip(0, 255).round()

    logger.debug("Found {0} points in {1}s".format(len(points),
                                                   time.time() - t))
    return points, desc
Exemplo n.º 2
0
def extract_features_hahog(image, config):
    t = time.time()
    points, desc = pyfeatures.hahog(image.astype(np.float32) / 255,  # VlFeat expects pixel values between 0, 1
                              peak_threshold=config['hahog_peak_threshold'],
                              edge_threshold=config['hahog_edge_threshold'],
                              target_num_features=config['feature_min_frames'],
                              use_adaptive_suppression=config['feature_use_adaptive_suppression'])

    if config['feature_root']:
        desc = np.sqrt(desc)
        uchar_scaling = 362  # x * 512 < 256  =>  sqrt(x) * 362 < 256
    else:
        uchar_scaling = 512

    if config['hahog_normalize_to_uchar']:
        desc = (uchar_scaling * desc).clip(0, 255).round()

    logger.debug('Found {0} points in {1}s'.format(len(points), time.time() - t))
    return points, desc