Exemplo n.º 1
0
    def __init__(self, chaosPOD, dim, defectSizes, detection, simulationSize):
        super(PODaggrChaos, self).__init__(dim, defectSizes.shape[0])
        self.chaosPOD = chaosPOD
        self.dim = dim
        self.defectSizes = defectSizes
        self.defectNumber = len(defectSizes)
        self.simulationSize = simulationSize
        self.detection = detection

        # get the sample of coefficient using the coef distribution
        # used to compute the POD for a given point
        sampleCoefs = chaosPOD.getCoefficientDistribution().getSample(
            simulationSize)

        # get some result from the polynomial chaos to build a vectoriel
        # chaos function that return the signal values for all chaos with
        # different coefficients for one specific point
        chaosResult = chaosPOD.getPolynomialChaosResult()
        reducedBasis = chaosResult.getReducedBasis()
        transformation = chaosResult.getTransformation()
        chaosFunctionCol = []
        for i, coefs in enumerate(sampleCoefs):
            standardChaosFunction = ot.LinearCombinationFunction(
                reducedBasis, coefs)
            chaosFunctionCol.append(
                ot.ComposedFunction(standardChaosFunction, transformation))
        self.chaosFunction = ot.AggregatedFunction(chaosFunctionCol)
Exemplo n.º 2
0
#
# .. math::
#    f = (f_1, \dots, f_n)
#

# %%
from __future__ import print_function
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
import math as m
ot.Log.Show(ot.Log.NONE)

# %%
# assume a list of functions to aggregate
functions = list()
functions.append(ot.SymbolicFunction(['x1', 'x2', 'x3'],
                                     ['x1^2 + x2', 'x1 + x2 + x3']))
functions.append(ot.SymbolicFunction(['x1', 'x2', 'x3'],
                                     ['x1 + 2 * x2 + x3', 'x1 + x2 - x3']))

# %%
# create the aggregated function
function = ot.AggregatedFunction(functions)

# %%
# evaluate the function
x = [1.0, 2.0, 3.0]
y = function(x)
print('x=', x, 'y=', y)
Exemplo n.º 3
0
lin31 = func3.isLinearlyDependent(1)
assert (not lin3)
assert (not lin30)
assert (lin31)

# 4. 2D non linear function
func4 = ot.SymbolicFunction(['x1', 'x2'], ['3*x1*x2'])
lin4 = func4.isLinear()
lin40 = func4.isLinearlyDependent(0)
lin41 = func4.isLinearlyDependent(1)
assert (not lin4)
assert (lin40)
assert (lin41)

# 5. Aggregated function
func5 = ot.AggregatedFunction([func2, func4])
lin5 = func5.isLinear()
lin50 = func5.isLinearlyDependent(0)
lin51 = func5.isLinearlyDependent(1)
assert (not lin5)
assert (lin50)
assert (lin51)

# 6. Python function


def pyFunc6(x):
    x1, x2 = x
    result = [3 * x1 - 2 * x2 + 5, -x1 + x2, 3 * x1 * x2]
    return result
Exemplo n.º 4
0
import openturns as ot

ot.TESTPREAMBLE()

dim = 2

x = [2.0 + i for i in range(dim)]

print("x=", x)

factory = ot.ConstantBasisFactory(dim)
print("factory=", factory)
basis = factory.build()
print("basis=", basis)

f = ot.AggregatedFunction(basis)
y = f(x)
print("y=", y)

factory = ot.LinearBasisFactory(dim)
print("factory=", factory)
basis = factory.build()
print("basis=", basis)

f = ot.AggregatedFunction(basis)
y = f(x)
print("y=", y)

factory = ot.QuadraticBasisFactory(dim)
print("factory=", factory)
basis = factory.build()
Exemplo n.º 5
0
    def run(self):
        """
        Build the POD models.

        Notes
        -----
        This method build the polynomial chaos model. First the censored data
        are filtered if needed. The Box Cox transformation is performed if it is
        enabled. Then it builds the POD models, the Monte Carlo simulation is
        performed for each given defect sizes. The confidence interval is 
        computed by simulating new coefficients of the polynomial chaos, then
        Monte Carlo simulations are performed.
        """

        # run the chaos algorithm and get result if not given
        if not self._userChaos:
            if self._verbose:
                print('Start build polynomial chaos model...')
            self._algoChaos = self._buildChaosAlgo(self._input, self._signals)
            self._algoChaos.run()
            if self._verbose:
                print('Polynomial chaos model completed')
            self._chaosResult = self._algoChaos.getResult()

                # get the metamodel
        self._chaosPred = self._chaosResult.getMetaModel()
        # get the basis, coef and transformation, needed for the confidence interval
        self._chaosCoefs = self._chaosResult.getCoefficients()
        self._reducedBasis = self._chaosResult.getReducedBasis()
        self._transformation = self._chaosResult.getTransformation()
        self._basisFunction = ot.ComposedFunction(ot.AggregatedFunction(
                                self._reducedBasis), self._transformation)

        # compute the residuals and stderr
        inputSize = self._input.getSize()
        basisSize = self._reducedBasis.getSize()
        self._residuals = self._signals - self._chaosPred(self._input) # residuals
        self._stderr = np.sqrt(np.sum(np.array(self._residuals)**2) / (inputSize - basisSize - 1))

        # Check the quality of the chaos model
        R2 = self.getR2()
        Q2 = self.getQ2()
        if self._verbose:
            print('Polynomial chaos validation R2 (>0.8) : {:0.4f}'.format(R2))
            print('Polynomial chaos validation Q2 (>0.8) : {:0.4f}'.format(Q2))

        # Compute the POD values for each defect sizes
        self.POD = self._computePOD(self._defectSizes, self._chaosCoefs)
        # create the interpolate function
        interpModel = interp1d(self._defectSizes, self.POD, kind='linear')
        self._PODmodel = ot.PythonFunction(1, 1, interpModel)

        ####################### confidence interval ############################
        dof = inputSize - basisSize - 1
        varEpsilon = (ot.ChiSquare(dof).inverse() * dof * self._stderr**2).getRealization()[0]
        gramBasis = ot.Matrix(self._basisFunction(self._input)).computeGram()
        covMatrix = gramBasis.solveLinearSystem(ot.IdentityMatrix(basisSize)) * varEpsilon
        self._coefsDist = ot.Normal(np.hstack(self._chaosCoefs), ot.CovarianceMatrix(covMatrix.getImplementation()))
        coefsRandom = self._coefsDist.getSample(self._simulationSize)

        self._PODPerDefect = ot.Sample(self._simulationSize, self._defectNumber)
        for i, coefs in enumerate(coefsRandom):
            self._PODPerDefect[i, :] = self._computePOD(self._defectSizes, coefs)
            if self._verbose:
                updateProgress(i, self._simulationSize, 'Computing POD per defect')