Exemplo n.º 1
0
        if not hasFrame:
            break
        (h_orig, w_orig) = original_frame.shape[:2]

        log.debug("Preprocessing frame")
        if original_frame.shape[2] > 1:
            frame = cv.cvtColor(cv.cvtColor(original_frame, cv.COLOR_BGR2GRAY), cv.COLOR_GRAY2RGB)
        else:
            frame = cv.cvtColor(original_frame, cv.COLOR_GRAY2RGB)

        img_rgb = frame.astype(np.float32) / 255
        img_lab = cv.cvtColor(img_rgb, cv.COLOR_RGB2Lab)
        img_l_rs = cv.resize(img_lab.copy(), (w_in, h_in))[:, :, 0]

        log.debug("Network inference")
        res = exec_net.infer(inputs={input_blob: [img_l_rs]})

        update_res = (res[output_blob] * color_coeff.transpose()[:, :, np.newaxis, np.newaxis]).sum(1)

        log.debug("Get results")
        out = update_res.transpose((1, 2, 0))
        out = cv.resize(out, (w_orig, h_orig))
        img_lab_out = np.concatenate((img_lab[:, :, 0][:, :, np.newaxis], out), axis=2)
        img_bgr_out = np.clip(cv.cvtColor(img_lab_out, cv.COLOR_Lab2BGR), 0, 1)

        if not args.no_show:
            log.debug("Show results")
            imshowSize = (640, 480)
            original_image = cv.resize(original_frame, imshowSize)
            grayscale_image = cv.resize(frame, imshowSize)
            colorize_image = (cv.resize(img_bgr_out, imshowSize) * 255).astype(np.uint8)
Exemplo n.º 2
0
class Model_YOLO_V3:
    def __init__(self, model_name, device='CPU', threshold=0.6):
        self.model_weights = model_name + '.bin'
        self.model_structure = model_name + '.xml'
        self.device = device
        self.threshold = threshold
        self.nms_threshold = 0.4

        self.model = IECore().read_network(model=self.model_structure, weights=self.model_weights)
        
        self.input_name = next(iter(self.model.inputs))
        self.input_shape = self.model.inputs[self.input_name].shape
        self.output_names = ['detector/yolo-v3/Conv_6/BiasAdd/YoloRegion', \
                             'detector/yolo-v3/Conv_14/BiasAdd/YoloRegion', \
                             'detector/yolo-v3/Conv_22/BiasAdd/YoloRegion']

        self.anchors = [[116,90, 156,198, 373,326], [30,61, 62,45, 59,119], [10,13, 16,30, 33,23]]
        self.labels = []
        self.load_labels('../models/coco.names')

        print('device : ', self.device)
        print('input name : ', self.input_name)
        print('input shape : ', self.input_shape)
        print('output names : ', self.output_names)


    def load_model(self):
        self.net = IECore().load_network(self.model, self.device)


    def load_labels(self, file_name):
        with open(file_name) as f:
            for id, name in enumerate(f):
                self.labels.append(name.rstrip('\n'))

    def predict(self, image):
        input_img = self.preprocess_input(image)

        start_time = time.time()

        output = self.net.infer({self.input_name:input_img})

        print('inference time : ', time.time() - start_time)

        return self.preprocess_output(output, image)


    def preprocess_input(self, image):
        p_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        p_img = cv2.resize(p_img, (self.input_shape[3], self.input_shape[2]))
        p_img = p_img.transpose((2,0,1))
        p_img = p_img.reshape(1, *p_img.shape)

        return p_img


    def preprocess_output(self, outputs, image):
        h, w, c = image.shape

        _, _, input_h, input_w = self.input_shape
        
        num_box = 3
        boxes = []

        for i in range(num_box):
            output = np.squeeze(outputs[self.output_names[i]])
            anchor = self.anchors[i]

            _, grid_h, grid_w = output.shape

            grid_width = input_w / grid_w
            grid_height = input_h / grid_h

            output = output.transpose((1,2,0))

            output = output.reshape((grid_h, grid_w, num_box, -1))
            
            for ih in range(grid_h):
                for iw in range(grid_w):
                    for ib in range(num_box):
                        objectness = output[ih][iw][ib][4]

                        if objectness >= self.threshold:
                            tx, ty, tw, th = output[ih][iw][ib][:4]

                            bx = round((iw + self.sigmoid(tx)) * grid_width) *  w / input_w
                            by = round((ih + self.sigmoid(ty)) * grid_height) *  h / input_h
                            bw = round(anchor[2*ib+0] * np.exp(tw)) * w / input_w
                            bh = round(anchor[2*ib+1] * np.exp(th)) * h / input_h

                            classes = output[ih][iw][ib][5:]
                            
                            boxes.append([bx,by,bh,bw, classes])
        
        for c in range(len(self.labels)):
            sorted_idx = np.argsort([-box[4][c] for box in boxes])
            
            for i in range(len(sorted_idx)):
                idx_i = sorted_idx[i]

                if boxes[idx_i][4][c] != 0:
                    for j in range(i+1, len(sorted_idx)):
                        idx_j = sorted_idx[j]

                        if self.iou(boxes[idx_i], boxes[idx_j]) >= self.nms_threshold:
                            boxes[idx_j][4][c] = 0

        ret = []

        for box in boxes:
            for i in range(len(self.labels)):
                if box[4][i] > 0.5:
                    x0 = int(max(box[0]-box[3]/2, 0))
                    y0 = int(max(box[1]-box[2]/2, 0))
                    x1 = int(min(box[0]+box[3]/2, w-1))
                    y1 = int(min(box[1]+box[2]/2, h-1))

                    ret.append([x0, y0, x1, y1, self.labels[np.argmax(box[4])]])

        return ret


    def sigmoid(self, x):
        return 1. / (1. + np.exp(-x))


    def iou(self, box1, box2):
        box1_xmin = box1[0] - box1[3]/2
        box1_ymin = box1[1] - box1[2]/2
        box1_xmax = box1[0] + box1[3]/2
        box1_ymax = box1[1] + box1[2]/2

        box2_xmin = box2[0] - box2[3]/2
        box2_ymin = box2[1] - box2[2]/2
        box2_xmax = box2[0] + box2[3]/2
        box2_ymax = box2[1] + box2[2]/2

        intersect_w = self._interval_overlap([box1_xmin, box1_xmax], [box2_xmin, box2_xmax])
        intersect_h = self._interval_overlap([box1_ymin, box1_ymax], [box2_ymin, box2_ymax])
        intersect = intersect_w * intersect_h

        w1, h1 = box1_xmax-box1_xmin, box1_ymax-box1_ymin
        w2, h2 = box2_xmax-box2_xmin, box2_ymax-box2_ymin
        union = w1*h1 + w2*h2 - intersect

        return float(intersect) / union


    def _interval_overlap(self, interval_a, interval_b):
        x1, x2 = interval_a
        x3, x4 = interval_b
        if x3 < x1:
            if x4 < x1:
                return 0
            else:
                return min(x2,x4) - x1
        else:
            if x2 < x3:
                return 0
            else:
                return min(x2,x4) - x3