Exemplo n.º 1
0
 def extract(cls, node):
     pb = node.parameters
     read_learning_info(pb)
     weights = read_binary_vector(pb)
     mapping_rule = {}
     embed_input(mapping_rule, 1, 'weights', weights)
     ScaleShiftOp.update_node_stat(node, mapping_rule)
     return cls.enabled
Exemplo n.º 2
0
 def extract(cls, node):
     pb = node.parameters
     read_learning_info(pb)
     biases = read_binary_vector(pb)
     bias_term = True
     mapping_rule = {'bias_term': bias_term}
     embed_input(mapping_rule, 1, 'weights', np.ones(biases.shape))
     embed_input(mapping_rule, 2, 'biases', biases)
     ScaleShiftOp.update_node_stat(node, mapping_rule)
     return cls.enabled
Exemplo n.º 3
0
    def extract(cls, node: Node) -> bool:
        """
        Extract conv parameters from node.parameters.
        node.parameters like file descriptor object.
        :param node: Convolution node
        :return:
        """
        pb = node.parameters
        kernel = read_token_value(pb, b'<PatchDim>')
        stride = read_token_value(pb, b'<PatchStep>')
        patch_stride = read_token_value(pb, b'<PatchStride>')

        read_learning_info(pb)

        collect_until_whitespace(pb)
        weights, weights_shape = read_binary_matrix(pb)

        collect_until_whitespace(pb)
        biases = read_binary_vector(pb)

        if (patch_stride - kernel) % stride != 0:
            raise Error(
                'Kernel size and stride does not correspond to `patch_stride` attribute of Convolution layer. ' +
                refer_to_faq_msg(93))

        output = biases.shape[0]
        if weights_shape[0] != output:
            raise Error('Weights shape does not correspond to the `output` attribute of Convolution layer. ' +
                        refer_to_faq_msg(93))

        mapping_rule = {
            'output': output,
            'patch_stride': patch_stride,
            'bias_term': None,
            'pad': np.array([[0, 0], [0, 0], [0, 0], [0, 0]], dtype=np.int64),
            'pad_spatial_shape': np.array([[0, 0], [0, 0]], dtype=np.int64),
            'dilation': np.array([1, 1, 1, 1], dtype=np.int64),
            'kernel': np.array([1, 1, 1, kernel], dtype=np.int64),
            'stride': np.array([1, 1, 1, stride], dtype=np.int64),
            'kernel_spatial': np.array([1, kernel], dtype=np.int64),
            'input_feature_channel': 1,
            'output_feature_channel': 0,
            'kernel_spatial_idx': [2, 3],
            'group': 1,
            'reshape_kernel': True,
        }

        mapping_rule.update(layout_attrs())
        embed_input(mapping_rule, 1, 'weights', weights)
        embed_input(mapping_rule, 2, 'biases', biases)

        mapping_rule['bias_addable'] = len(biases) > 0

        Convolution.update_node_stat(node, mapping_rule)
        return cls.enabled
Exemplo n.º 4
0
    def extract(cls, node):
        pb = node.parameters
        read_learning_info(pb)
        weights, weights_shape = read_binary_matrix(pb)
        biases = read_binary_vector(pb)

        mapping_rule = {
            'out-size': weights_shape[0],
            'transpose_weights': True,
        }
        embed_input(mapping_rule, 1, 'weights', weights)
        embed_input(mapping_rule, 2, 'biases', biases)

        FullyConnected.update_node_stat(node, mapping_rule)
        return cls.enabled
Exemplo n.º 5
0
 def extract(cls, node: Node):
     read_learning_info(node.parameters)
     return FixedAffineComponentFrontExtractor.extract(node)