Exemplo n.º 1
0
    def insert_reduce(self,
                      model_graph,
                      insert_op,
                      node,
                      granularity,
                      type_stat,
                      node_name,
                      axis=1):
        axis_const = self.find_axis(node, granularity, axis)
        if isinstance(axis_const, str):
            return (True, node.name)

        out_port = self.get_out_port(node_name)
        if out_port is not None:
            node_name = f'{node_name[0]}.{out_port}'
        reduce_op = create_op_node_with_second_input(
            node.graph, insert_op, int64_array(axis_const),
            dict(name=f'{type_stat}_{node_name}'))
        reduce_op['fullname'] = reset_node_fullname(node.fullname,
                                                    reduce_op.name)
        if node.graph != model_graph:
            Op.create_data_node(reduce_op.graph, reduce_op, {'shape': [1]})

        node.out_port(out_port if out_port else 0).connect(
            reduce_op.in_port(0))
        return self.insert_result(model_graph, node, reduce_op, type_stat,
                                  out_port)
Exemplo n.º 2
0
    def _create_data_if_necessary(self):
        if self.node.graph.stage == 'front':
            raise Error("_create_data_if_necessary method is not applicable for front Graph phase!")
        if self.type == 'in':
            raise Error("_create_data_if_necessary method is not applicable for 'in' Port type!")

        if self.idx not in self.node.out_nodes(control_flow=self.control_flow):
            from openvino.tools.mo.ops.op import Op
            Op.create_data_node(self.node.graph, self.node, out_port=self.idx)
            self.node['need_shape_inference'] = True
        return self.node.out_node(self.idx, control_flow=self.control_flow)
    def insert_abs_max(self, model_graph, node, type_stat, node_name,
                       **kwargs):
        axis_const = self.find_axis(node, kwargs.get('granularity'))
        if isinstance(axis_const, str):
            return (True, node.name)
        abs_node = Abs(node.graph, {
            "name": f'abs_{node_name}'
        }).create_node_with_data([node.out_node(0)]).in_node(0)
        max_op = create_op_node_with_second_input(
            node.graph, ReduceMax, int64_array(axis_const),
            dict(name=f'{type_stat}_{node_name}'))

        if node.graph != model_graph:
            Op.create_data_node(max_op.graph, max_op, {'shape': [1]})
        max_op['fullname'] = reset_node_fullname(node.fullname, max_op.name)
        abs_node.out_port(0).connect(max_op.in_port(0))
        return self.insert_result(model_graph, node, max_op, type_stat)
Exemplo n.º 4
0
    def find_and_replace_pattern(self, graph: Graph):
        for node in list(graph.nodes()):
            node = Node(graph, node)
            node_name = node.soft_get('name', node.id)
            # Check that node layout mismatch with graph layout
            # For example: NHWC and NCHW or NCDHW and NDHWC
            if node.kind == 'op' and node.has_valid(
                    'layout') and node.layout != indices_mapping[len(
                        node.layout)][graph.graph['layout']]:
                input = node.in_node()
                output = node.out_node()

                # Calculate permutation for further Transpose operations
                if graph.graph['layout'] == 'NCHW':
                    # if Node has NCHW and graph has NHWC layout
                    permutation = PermuteAttrs.get_nhwc_to_nchw_permutation(
                        len(node.layout))
                else:
                    # if Node has NHWC and graph has NCHW layout
                    permutation = PermuteAttrs.get_nchw_to_nhwc_permutation(
                        len(node.layout))

                # Schematic representation of transformation below
                #
                #                                           \            NCHW                              NCHW
                #            NHWC                        --  \            |  permutation       permutation  |
                #   data-->Convolution(example)-->data   --  /            |      |       NCHW      |        |
                #                                           /   data->Transpose->data->Convolution->data->Transpose->data

                # 1. Insert input Transpose
                #    This Transpose will permute input from original input layout to operation layout
                edge_attrs = graph.get_edge_data(input.id, node.id)[0]
                graph.remove_edge(input.id, node.id)

                input_permute_name = node_name + '/input_transpose'
                input_order_const = Const(
                    graph, {
                        'name': input_permute_name + '/order',
                        'value': permutation.perm
                    }).create_node_with_data()
                input_permute_op = Transpose(graph,
                                             {'name': input_permute_name})
                input_permute_data_node = input_permute_op.create_node_with_data(
                    [input, input_order_const])

                graph.add_edge(input_permute_data_node.id, node.id,
                               **edge_attrs)

                # 2. Insert output Transpose
                #    This Transpose will permute output from operation layout to original input layout
                edge_attrs = graph.get_edge_data(node.id, output.id)[0]
                graph.remove_edge(node.id, output.id)

                input_data_node = Op.create_data_node(
                    graph, node, {'shape': output.shape[permutation.perm]},
                    edge_attrs)

                output_permute_name = node_name + '/output_transpose'
                output_order_const = Const(
                    graph, {
                        'name': output_permute_name + '/order',
                        'value': permutation.inv
                    }).create_node_with_data()
                output_permute_op = Transpose(graph, {
                    'name': output_permute_name
                }).create_node_with_data([input_data_node, output_order_const],
                                         data_nodes=output)

                # 3. Add permutations for Node
                #    Here we use permutation mechanism where data nodes takes permutation attribute.
                #    And then we call permute_attrs method that permutes node attributes according to permutations on
                #    data nodes.
                node.in_node()['permutation'] = permutation
                node.out_node()['permutation'] = permutation
                node.permute_attrs.permute_attrs(node)

                node.in_node()['permutation'] = None
                node.out_node()['permutation'] = None