def week2_adaptive_hsv(video: Video, debug=False) -> Iterator[Frame]:
    model_mean, model_std = get_background_model(video,
                                                 int(2141 * 0.25),
                                                 total_frames=int(2141 * 0.25),
                                                 pixel_value=PixelValue.HSV)

    ground_truth = read_detections(
        '../datasets/AICity_data/train/S03/c010/gt/gt.txt')

    frame_id = int(2141 * 0.25)
    roi = cv2.cvtColor(
        cv2.imread('../datasets/AICity_data/train/S03/c010/roi.jpg'),
        cv2.COLOR_BGR2GRAY)
    for im, mask in gaussian_model_adaptive(video,
                                            int(2141 * 0.25),
                                            model_mean,
                                            model_std,
                                            total_frames=int(2141 * 0.10),
                                            pixel_value=PixelValue.HSV,
                                            alpha=1.75,
                                            rho=0.01):
        mask = mask & roi
        if debug:
            cv2.imshow('f', mask)
            cv2.waitKey()
        mask = opening(mask, 7)
        if debug:
            cv2.imshow('f', mask)
            cv2.waitKey()
        mask = closing(mask, 35)
        if debug:
            cv2.imshow('f', mask)
            cv2.waitKey()
        mask, detections = find_boxes(mask)

        frame = Frame(frame_id)
        frame.detections = detections
        frame.ground_truth = ground_truth[frame_id]

        if debug:
            mask2 = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
            for detection in detections:
                cv2.rectangle(
                    mask2,
                    (int(detection.top_left[1]), int(detection.top_left[0])),
                    (int(detection.get_bottom_right()[1]),
                     int(detection.get_bottom_right()[0])), (0, 255, 0), 5)
            for gt in ground_truth[frame_id]:
                cv2.rectangle(mask2,
                              (int(gt.top_left[1]), int(gt.top_left[0])),
                              (int(gt.get_bottom_right()[1]),
                               int(gt.get_bottom_right()[0])), (255, 0, 0), 5)
            cv2.imshow('f', mask2)
            cv2.waitKey()

        yield im, mask, frame

        frame_id += 1
Exemplo n.º 2
0
def week2_soa(video: Video, debug=False) -> Iterator[Frame]:
    th = 150
    frame_id = 0
    fgbg = cv.createBackgroundSubtractorMOG2()

    ground_truth = read_detections(
        '../datasets/AICity_data/train/S03/c010/gt/gt.txt')
    roi = cv.cvtColor(
        cv.imread('../datasets/AICity_data/train/S03/c010/roi.jpg'),
        cv.COLOR_BGR2GRAY)

    for im in tqdm(video.get_frames(),
                   total=2141,
                   file=sys.stdout,
                   desc='Training model...'):
        mask = fgbg.apply(im)
        mask[mask < th] = 0

        mask.astype(np.uint8) * 255

        mask = mask & roi

        mask = opening(mask, 5)
        # cv.imshow('f', mask)
        # cv.waitKey()

        mask = closing(mask, 25)
        # cv.imshow('f', mask)
        # cv.waitKey()

        mask, detections = find_boxes(mask)

        frame = Frame(frame_id)
        frame.detections = detections
        frame.ground_truth = ground_truth[frame_id]

        frame_id += 1

        yield im, mask, frame