Exemplo n.º 1
0
    def check_backward(self, x_data, y_data, z_grad):
        if self.right_const:
            op = lambda x: operator.matmul(x, y_data)
            data = (x_data,)
        elif self.left_const:
            op = lambda y: operator.matmul(x_data, y)
            data = (y_data,)
        else:
            op = operator.matmul
            data = x_data, y_data

        if self.dtype == numpy.float16:
            options = {"atol": 1e-3, "rtol": 1e-3}
        else:
            options = {"atol": 1e-4, "rtol": 1e-4}
        gradient_check.check_backward(op, data, z_grad, dtype=numpy.float64, **options)
Exemplo n.º 2
0
 def check_forward(self, x_data, y_data):
     if self.left_const:
         x = x_data
     else:
         x = chainer.Variable(x_data)
     if self.right_const:
         y = y_data
     else:
         y = chainer.Variable(y_data)
     z = operator.matmul(x, y)
     if self.dtype == numpy.float16:
         options = {'atol': 1e-3, 'rtol': 1e-3}
     else:
         options = {'atol': 1e-7, 'rtol': 1e-7}
     testing.assert_allclose(
         operator.matmul(self.x, self.y), z.data, **options)
Exemplo n.º 3
0
 def test_operator_matmul(self, xp, dtype1, dtype2):
     if dtype1 == numpy.float16 and dtype2 == numpy.int8:
         return xp.array([])
     if dtype2 == numpy.float16 and dtype1 == numpy.int8:
         return xp.array([])
     x1 = testing.shaped_arange(self.shape_pair[0], xp, dtype1)
     x2 = testing.shaped_arange(self.shape_pair[1], xp, dtype2)
     return operator.matmul(x1, x2)
Exemplo n.º 4
0
    def test_matmul(self):
        D = {'shape': self.A.shape,
             'matvec': lambda x: np.dot(self.A, x).reshape(self.A.shape[0]),
             'rmatvec': lambda x: np.dot(self.A.T.conj(),
                                         x).reshape(self.A.shape[1]),
             'rmatmat': lambda x: np.dot(self.A.T.conj(), x),
             'matmat': lambda x: np.dot(self.A, x)}
        A = interface.LinearOperator(**D)
        B = np.array([[1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9]])
        b = B[0]

        assert_equal(operator.matmul(A, b), A * b)
        assert_equal(operator.matmul(A, B), A * B)
        assert_raises(ValueError, operator.matmul, A, 2)
        assert_raises(ValueError, operator.matmul, 2, A)
Exemplo n.º 5
0
    def test_matmul(self):
        self.assertRaises(TypeError, operator.matmul)
        self.assertRaises(TypeError, operator.matmul, 42, 42)

        class M:
            def __matmul__(self, other):
                return other - 1

        self.assertEqual(operator.matmul(M(), 42), 41)
Exemplo n.º 6
0
    def test_matmul(self):
        if not TEST_MATMUL:
            raise nose.SkipTest("matmul is only tested in Python 3.5+")

        D = {
            "shape": self.A.shape,
            "matvec": lambda x: np.dot(self.A, x).reshape(self.A.shape[0]),
            "rmatvec": lambda x: np.dot(self.A.T.conj(), x).reshape(self.A.shape[1]),
            "matmat": lambda x: np.dot(self.A, x),
        }
        A = interface.LinearOperator(**D)
        B = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
        b = B[0]

        assert_equal(operator.matmul(A, b), A * b)
        assert_equal(operator.matmul(A, B), A * B)
        assert_raises(ValueError, operator.matmul, A, 2)
        assert_raises(ValueError, operator.matmul, 2, A)
Exemplo n.º 7
0
    def test_matmul(self):
        if not TEST_MATMUL:
            raise nose.SkipTest("matmul is only tested in Python 3.5+")

        D = {'shape': self.A.shape,
             'matvec': lambda x: np.dot(self.A, x).reshape(self.A.shape[0]),
             'rmatvec': lambda x: np.dot(self.A.T.conj(),
                                         x).reshape(self.A.shape[1]),
             'matmat': lambda x: np.dot(self.A, x)}
        A = interface.LinearOperator(**D)
        B = np.array([[1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9]])
        b = B[0]

        assert_equal(operator.matmul(A, b), A * b)
        assert_equal(operator.matmul(A, B), A * B)
        assert_raises(ValueError, operator.matmul, A, 2)
        assert_raises(ValueError, operator.matmul, 2, A)
Exemplo n.º 8
0
    def testSparseMatmul(self):
        X = jnp.arange(16).reshape(4, 4)
        Xsp = BCOO.fromdense(X)
        Y = jnp.ones(4)
        Ysp = BCOO.fromdense(Y)

        # dot_general
        result_sparse = self.sparsify(operator.matmul)(Xsp, Y)
        result_dense = operator.matmul(X, Y)
        self.assertAllClose(result_sparse, result_dense)

        # rdot_general
        result_sparse = self.sparsify(operator.matmul)(Y, Xsp)
        result_dense = operator.matmul(Y, X)
        self.assertAllClose(result_sparse, result_dense)

        # spdot_general
        result_sparse = self.sparsify(operator.matmul)(Xsp, Ysp)
        result_dense = operator.matmul(X, Y)
        self.assertAllClose(result_sparse.todense(), result_dense)
Exemplo n.º 9
0
    def check_backward(self, x_data, y_data, z_grad):
        if self.right_const:
            op = lambda x: operator.matmul(x, y_data)
            data = x_data,
        elif self.left_const:
            op = lambda y: operator.matmul(x_data, y)
            data = y_data,
        else:
            op = operator.matmul
            data = x_data, y_data

        if self.dtype == numpy.float16:
            options = {'atol': 1e-3, 'rtol': 1e-3}
        else:
            options = {'atol': 1e-4, 'rtol': 1e-4}
        gradient_check.check_backward(op,
                                      data,
                                      z_grad,
                                      dtype=numpy.float64,
                                      **options)
Exemplo n.º 10
0
def test_dot(a_shape, b_shape, a_format, b_format, a_comp_axes, b_comp_axes):
    if a_format == "coo" or len(a_shape) == 1:
        a_comp_axes = None
    if b_format == "coo" or len(b_shape) == 1:
        b_comp_axes = None
    sa = sparse.random(
        a_shape, density=0.5, format=a_format, compressed_axes=a_comp_axes
    )
    sb = sparse.random(
        b_shape, density=0.5, format=b_format, compressed_axes=b_comp_axes
    )

    a = sa.todense()
    b = sb.todense()

    assert_eq(a.dot(b), sa.dot(sb))
    assert_eq(np.dot(a, b), sparse.dot(sa, sb))
    assert_eq(sparse.dot(sa, b), sparse.dot(a, sb))
    assert_eq(np.dot(a, b), sparse.dot(sa, sb))

    # Basic equivalences
    assert_eq(operator.matmul(a, b), operator.matmul(sa, sb))
Exemplo n.º 11
0
 def check_forward(self, x_data, y_data):
     if self.left_const:
         x = x_data
     else:
         x = chainer.Variable(x_data)
     if self.right_const:
         y = y_data
     else:
         y = chainer.Variable(y_data)
     z = operator.matmul(x, y)
     if self.dtype == numpy.float16:
         options = {'atol': 1e-3, 'rtol': 1e-3}
     else:
         options = {'atol': 1e-7, 'rtol': 1e-7}
     testing.assert_allclose(self.x.dot(self.y), z.data, **options)
Exemplo n.º 12
0
    def test_nb_ops_binary(self):
        import operator
        mod = self.make_module(r"""
            @DEFINE_PointObject

            #define MYSLOT(NAME)                                               \
                HPyDef_SLOT(p_##NAME, NAME##_impl, HPy_nb_##NAME);             \
                static HPy NAME##_impl(HPyContext ctx, HPy self, HPy other)    \
                {                                                              \
                    HPy s = HPyUnicode_FromString(ctx, #NAME);                 \
                    HPy res = HPyTuple_Pack(ctx, 3, self, s, other);           \
                    HPy_Close(ctx, s);                                         \
                    return res;                                                \
                }

            MYSLOT(add)
            MYSLOT(and)
            MYSLOT(divmod)
            MYSLOT(floor_divide)
            MYSLOT(lshift)
            MYSLOT(multiply)
            MYSLOT(or)
            MYSLOT(remainder)
            MYSLOT(rshift)
            MYSLOT(subtract)
            MYSLOT(true_divide)
            MYSLOT(xor)
            MYSLOT(matrix_multiply)

            @EXPORT_POINT_TYPE(&p_add, &p_and, &p_divmod, &p_floor_divide, &p_lshift, &p_multiply, &p_or, &p_remainder, &p_rshift, &p_subtract, &p_true_divide, &p_xor, &p_matrix_multiply)
            @INIT
        """)
        p = mod.Point()
        assert p + 42 == (p, "add", 42)
        assert p & 42 == (p, "and", 42)
        assert divmod(p, 42) == (p, "divmod", 42)
        assert p // 42 == (p, "floor_divide", 42)
        assert p << 42 == (p, "lshift", 42)
        assert p * 42 == (p, "multiply", 42)
        assert p | 42 == (p, "or", 42)
        assert p % 42 == (p, "remainder", 42)
        assert p >> 42 == (p, "rshift", 42)
        assert p - 42 == (p, "subtract", 42)
        assert p / 42 == (p, "true_divide", 42)
        assert p ^ 42 == (p, "xor", 42)
        # we can't use '@' because we want to be importable on py27
        assert operator.matmul(p, 42) == (p, "matrix_multiply", 42)
Exemplo n.º 13
0
    def matmul(
        self, y: Union[int, float, torch.Tensor, "ReplicatedSharedTensor"]
    ) -> "ReplicatedSharedTensor":
        """Apply the "matmul" operation between "self" and "y".

        Args:
            y (Union[int, float, torch.Tensor, "ReplicatedSharedTensor"]): self@y

        Returns:
            ReplicatedSharedTensor: Result of the operation.

        Raises:
            ValueError: Raised when private matmul is performed parties!=3.

        """
        y_tensor, session = self.sanity_checks(self, y)
        is_private = isinstance(y, ReplicatedSharedTensor)

        op_str = "matmul"

        if is_private:
            if session.nr_parties == 3:
                from sympc.protocol import Falcon

                result = [
                    Falcon.multiplication_protocol(self, y_tensor, op_str)
                ]
            else:
                raise ValueError(
                    "Private matmul between ReplicatedSharedTensors is allowed only for 3 parties"
                )
        else:
            result = [
                operator.matmul(share, y_tensor.shares[0])
                for share in self.shares
            ]

        tensor = ReplicatedSharedTensor(ring_size=self.ring_size,
                                        session_uuid=self.session_uuid,
                                        config=self.config)
        tensor.shares = result

        return tensor
Exemplo n.º 14
0
 def test_operator_matmul(self, xp, dtype1, dtype2):
     x1 = testing.shaped_arange(self.shape_pair[0], xp, dtype1)
     x2 = testing.shaped_arange(self.shape_pair[1], xp, dtype2)
     return operator.matmul(x1, x2)
Exemplo n.º 15
0
 def op(x, y):
     z = operator.matmul(x, y)
     return z * z
Exemplo n.º 16
0
 def op(x):
     z = operator.matmul(x, y_data)
     return z * z
Exemplo n.º 17
0
 def op(x):
     return operator.matmul(x, y_data)
Exemplo n.º 18
0
 def _get_immeditate_energies_avaialable_jit(spins, matrix, bias):
     return -(2 * spins * (matmul(matrix, spins) + bias))
Exemplo n.º 19
0
 def _calculate_energy_change(new_spins, matrix, bias, action):
     return 2 * new_spins[action] * (
         matmul(new_spins.T, matrix[:, action]) + bias[action])
Exemplo n.º 20
0
 def _get_immeditate_energies_avaialable_jit(spins, matrix):
     return 2 * spins * matmul(matrix, spins)
Exemplo n.º 21
0
 def op(y):
     z = operator.matmul(x_data, y)
     return z * z
Exemplo n.º 22
0
 def op(x):
     z = operator.matmul(x, y_data)
     return z * z
Exemplo n.º 23
0
 def op(y):
     return operator.matmul(x_data, y)
Exemplo n.º 24
0
 def op(x):
     return operator.matmul(x, y_data)
Exemplo n.º 25
0
 def matmul_usecase(x, y):
     return operator.matmul(x, y)
Exemplo n.º 26
0
 def test_matmul(self):
     other = mock.MagicMock()
     self.assertEqual(operator.matmul(self.proxy, other),
                      operator.matmul(self.obj, other))
     self.assertEqual(self.proxy.__matmul__(other),
                      operator.matmul(self.obj, other))
Exemplo n.º 27
0
 def op(x):
     z = operator.matmul(x, y_data.astype(x.dtype))
     return z * z
Exemplo n.º 28
0
 def _calculate_energy_jit(spins, matrix):
     return -matmul(spins.T, matmul(matrix, spins)) / 2
Exemplo n.º 29
0
 def op(x, y):
     z = operator.matmul(x, y)
     return z * z
Exemplo n.º 30
0
 def _get_immeditate_cuts_avaialable_jit(spins, matrix):
     return spins * matmul(matrix, spins)
Exemplo n.º 31
0
 def test_operator_matmul3(self, xp):
     x1 = testing.shaped_arange(self.shape_pair[0], xp, numpy.int8)
     x2 = testing.shaped_arange(self.shape_pair[1], xp, numpy.float16)
     return operator.matmul(x1, x2)
Exemplo n.º 32
0
 def _calculate_energy_jit(spins, matrix, bias):
     return matmul(spins.T, matmul(matrix, spins)) / 2 + matmul(
         spins.T, bias)
Exemplo n.º 33
0
 def op(y):
     return operator.matmul(x_data.astype(y.dtype), y)
Exemplo n.º 34
0
def matmul(a, b):
    if bpy.app.version < (2, 80):
        return a * b
    else:
        return operator.matmul(a, b)  # a @ b
Exemplo n.º 35
0
 def op(x):
     return operator.matmul(x, y_data.astype(x.dtype))
Exemplo n.º 36
0
 def op(y):
     return operator.matmul(x_data, y)
Exemplo n.º 37
0
 def __rmatmul__(self, other):
     proxiee = _get_proxiee(self)
     _logger.debug("__rmatmul__ on proxiee (%r)", proxiee)
     # NOTE: this is equivalent to ``proxiee @ other`` but we cannot use
     # this syntax as long as 3.4 and earlier have to be supported.
     return operator.matmul(other, proxiee)
Exemplo n.º 38
0
 def op(y):
     z = operator.matmul(x_data, y)
     return z * z
Exemplo n.º 39
0
    def test_matmul(self):
        # matmul test is for GH #10259
        a = Series(np.random.randn(4), index=["p", "q", "r", "s"])
        b = DataFrame(
            np.random.randn(3, 4), index=["1", "2", "3"], columns=["p", "q", "r", "s"]
        ).T

        # Series @ DataFrame -> Series
        result = operator.matmul(a, b)
        expected = Series(np.dot(a.values, b.values), index=["1", "2", "3"])
        tm.assert_series_equal(result, expected)

        # DataFrame @ Series -> Series
        result = operator.matmul(b.T, a)
        expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
        tm.assert_series_equal(result, expected)

        # Series @ Series -> scalar
        result = operator.matmul(a, a)
        expected = np.dot(a.values, a.values)
        tm.assert_almost_equal(result, expected)

        # GH 21530
        # vector (1D np.array) @ Series (__rmatmul__)
        result = operator.matmul(a.values, a)
        expected = np.dot(a.values, a.values)
        tm.assert_almost_equal(result, expected)

        # GH 21530
        # vector (1D list) @ Series (__rmatmul__)
        result = operator.matmul(a.values.tolist(), a)
        expected = np.dot(a.values, a.values)
        tm.assert_almost_equal(result, expected)

        # GH 21530
        # matrix (2D np.array) @ Series (__rmatmul__)
        result = operator.matmul(b.T.values, a)
        expected = np.dot(b.T.values, a.values)
        tm.assert_almost_equal(result, expected)

        # GH 21530
        # matrix (2D nested lists) @ Series (__rmatmul__)
        result = operator.matmul(b.T.values.tolist(), a)
        expected = np.dot(b.T.values, a.values)
        tm.assert_almost_equal(result, expected)

        # mixed dtype DataFrame @ Series
        a["p"] = int(a.p)
        result = operator.matmul(b.T, a)
        expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
        tm.assert_series_equal(result, expected)

        # different dtypes DataFrame @ Series
        a = a.astype(int)
        result = operator.matmul(b.T, a)
        expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
        tm.assert_series_equal(result, expected)

        msg = r"Dot product shape mismatch, \(4,\) vs \(3,\)"
        # exception raised is of type Exception
        with pytest.raises(Exception, match=msg):
            a.dot(a.values[:3])
        msg = "matrices are not aligned"
        with pytest.raises(ValueError, match=msg):
            a.dot(b.T)
Exemplo n.º 40
0
 def matmul_usecase(x, y):
     return operator.matmul(x, y)
Exemplo n.º 41
0
 def test_invalid_type(self):
     x = chainer.Variable(self.x)
     y = chainer.Variable(self.y)
     with pytest.raises(type_check.InvalidType):
         operator.matmul(x, y)
Exemplo n.º 42
0
def cos_sim(v1, v2):
    norm = np.linalg.norm(v1) * np.linalg.norm(v2)
    return matmul(v1, v2) / norm if norm else -1
Exemplo n.º 43
0
 def test_operator_matmul(self, xp, dtype1, dtype2):
     if not numpy.result_type(dtype1, dtype2) == numpy.float32:
         return xp.array([])
     x1 = xp.array(self.x1, dtype=dtype1)
     x2 = xp.array(self.x2, dtype=dtype2)
     return operator.matmul(x1, x2)
Exemplo n.º 44
0
    def test_matmul(self):
        # matmul test is for GH#10259
        a = DataFrame(np.random.randn(3, 4),
                      index=["a", "b", "c"],
                      columns=["p", "q", "r", "s"])
        b = DataFrame(np.random.randn(4, 2),
                      index=["p", "q", "r", "s"],
                      columns=["one", "two"])

        # DataFrame @ DataFrame
        result = operator.matmul(a, b)
        expected = DataFrame(np.dot(a.values, b.values),
                             index=["a", "b", "c"],
                             columns=["one", "two"])
        tm.assert_frame_equal(result, expected)

        # DataFrame @ Series
        result = operator.matmul(a, b.one)
        expected = Series(np.dot(a.values, b.one.values),
                          index=["a", "b", "c"])
        tm.assert_series_equal(result, expected)

        # np.array @ DataFrame
        result = operator.matmul(a.values, b)
        assert isinstance(result, DataFrame)
        assert result.columns.equals(b.columns)
        assert result.index.equals(Index(range(3)))
        expected = np.dot(a.values, b.values)
        tm.assert_almost_equal(result.values, expected)

        # nested list @ DataFrame (__rmatmul__)
        result = operator.matmul(a.values.tolist(), b)
        expected = DataFrame(np.dot(a.values, b.values),
                             index=["a", "b", "c"],
                             columns=["one", "two"])
        tm.assert_almost_equal(result.values, expected.values)

        # mixed dtype DataFrame @ DataFrame
        a["q"] = a.q.round().astype(int)
        result = operator.matmul(a, b)
        expected = DataFrame(np.dot(a.values, b.values),
                             index=["a", "b", "c"],
                             columns=["one", "two"])
        tm.assert_frame_equal(result, expected)

        # different dtypes DataFrame @ DataFrame
        a = a.astype(int)
        result = operator.matmul(a, b)
        expected = DataFrame(np.dot(a.values, b.values),
                             index=["a", "b", "c"],
                             columns=["one", "two"])
        tm.assert_frame_equal(result, expected)

        # unaligned
        df = DataFrame(np.random.randn(3, 4),
                       index=[1, 2, 3],
                       columns=range(4))
        df2 = DataFrame(np.random.randn(5, 3),
                        index=range(5),
                        columns=[1, 2, 3])

        with pytest.raises(ValueError, match="aligned"):
            operator.matmul(df, df2)
Exemplo n.º 45
0
 def _calculate_energy_change(new_spins, matrix, action):
     return -2 * new_spins[action] * matmul(new_spins.T, matrix[:, action])
Exemplo n.º 46
0
 def _calculate_cut_change(new_spins, matrix, action):
     return -1 * new_spins[action] * matmul(new_spins.T, matrix[:, action])
Exemplo n.º 47
0
 def op(y):
     z = operator.matmul(x_data.astype(y.dtype), y)
     return z * z