Exemplo n.º 1
0
	def encode_layer(self, input_, dilation, layer_no):
		options = self.options
		relu1 = tf.nn.relu(input_, name = 'enc_relu1_layer{}'.format(layer_no))
		conv1 = ops.conv1d(relu1, options['residual_channels'], name = 'enc_conv1d_1_layer{}'.format(layer_no))
		relu2 = tf.nn.relu(conv1, name = 'enc_relu2_layer{}'.format(layer_no))
		dilated_conv = ops.dilated_conv1d(relu2, options['residual_channels'], 
			dilation, options['encoder_filter_width'],
			causal = False, 
			name = "enc_dilated_conv_layer{}".format(layer_no)
			)
		relu3 = tf.nn.relu(dilated_conv, name = 'enc_relu1_layer{}'.format(layer_no))
		conv2 = ops.conv1d(relu3, 2 * options['residual_channels'], name = 'enc_conv1d_2_layer{}'.format(layer_no))
		return input_ + conv2
Exemplo n.º 2
0
    def build_generator(self, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        options = self.options
        self.seed_sentence = tf.placeholder('int32', [None, None],
                                            name='seed_sentence')

        source_embedding = tf.nn.embedding_lookup(self.w_sentence_embedding,
                                                  self.seed_sentence,
                                                  name="source_embedding")

        curr_input = source_embedding
        for layer_no, dilation in enumerate(options['dilations']):
            curr_input = ops.byetenet_residual_block(
                curr_input,
                dilation,
                layer_no,
                options['residual_channels'],
                options['filter_width'],
                causal=True,
                train=False)

        logits = ops.conv1d(tf.nn.relu(curr_input),
                            options['vocab_size'],
                            name='logits')
        logits_flat = tf.reshape(logits, [-1, options['vocab_size']])
        probs_flat = tf.nn.softmax(logits_flat)

        self.g_probs = tf.reshape(
            probs_flat,
            [-1, tf.shape(self.seed_sentence)[1], options['vocab_size']])
	def generator(self, state_logits, last_idx, vocab_dim, reuse=False):
		with tf.variable_scope("gen", reuse=reuse):
			#h:      (mb_size, seq_len, 128)
			h = ops.conv1d(state_logits, 128, dilation=1, k_w=1, name="conv1")
			h = tf.nn.relu(h)

			#logits:      (mb_size, seq_len, vocab_dim)
			#logits_last: (mb_size, vocab_dim)
			#greedy_pred: (mb_size, seq_len)
			#prob:        (mb_size, seq_len, vocab_dim)
			logits = ops.conv1d(h, vocab_dim, dilation=1, k_w=1, name="conv_logits")
			logits_last = tf.gather_nd(logits, last_idx)
			greedy_pred = tf.argmax(logits, axis=-1)
			prob = tf.nn.softmax(logits, axis=-1)

			return logits, logits_last, greedy_pred, prob
    def predict_graph(self, is_negsample=False, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()
        self.input_predict = tf.placeholder('int32', [None, None],
                                            name='input_predict')

        label_seq, dilate_input = self.model_graph(self.input_predict,
                                                   train=False)
        model_para = self.model_para

        if is_negsample:
            logits_2D = tf.reshape(dilate_input[:, -1:, :],
                                   [-1, model_para['dilated_channels']])
            logits_2D = tf.matmul(logits_2D, tf.transpose(self.softmax_w))
            logits_2D = tf.nn.bias_add(logits_2D, self.softmax_b)
        else:
            logits = ops.conv1d(tf.nn.relu(dilate_input[:, -1:, :]),
                                model_para['item_size'],
                                name='logits')
            logits_2D = tf.reshape(logits, [-1, model_para['item_size']])

        label_flat = tf.reshape(label_seq[:, -1], [-1])
        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=label_flat, logits=logits_2D)
        self.loss_test = tf.reduce_mean(loss)
        probs_flat = tf.nn.softmax(logits_2D)
        self.g_probs = tf.reshape(probs_flat,
                                  [-1, 1, model_para['item_size']])  #slow
        self.top_k = tf.nn.top_k(
            self.g_probs[:, -1], k=5, name='top-k'
        )  # much faster, if you change [probs] = sess.run([itemrec.g_probs],..)to [top_k] = sess.run([itemrec.top_k],..) in NextitNet_TF_Pretrain.py
Exemplo n.º 5
0
    def predict_graph(self, is_negsample=False, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()
        self.input_predict = tf.placeholder('int32', [None, None],
                                            name='input_predict')

        label_seq, dilate_input = self.model_graph(self.input_predict,
                                                   train=False)
        model_para = self.model_para

        if is_negsample:
            logits_2D = tf.reshape(dilate_input[:, -1:, :],
                                   [-1, model_para['dilated_channels']])
            logits_2D = tf.matmul(logits_2D, tf.transpose(self.softmax_w))
            logits_2D = tf.nn.bias_add(logits_2D, self.softmax_b)
        else:
            logits = ops.conv1d(tf.nn.relu(dilate_input[:, -1:, :]),
                                model_para['item_size'],
                                name='logits')
            logits_2D = tf.reshape(logits, [-1, model_para['item_size']])

        label_flat = tf.reshape(label_seq[:, -1], [-1])
        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=label_flat, logits=logits_2D)
        self.loss_test = tf.reduce_mean(loss)
        probs_flat = tf.nn.softmax(logits_2D)
        self.g_probs = tf.reshape(probs_flat, [-1, 1, model_para['item_size']])
Exemplo n.º 6
0
    def predict_graph_onrecall(self, is_negsample=False, reuse=False):

        if reuse:
            tf.get_variable_scope().reuse_variables()
        self.input_predict = tf.placeholder('int32', [None, None], name='input_predict')
        self.input_recall = tf.placeholder('int32', [None, None], name='input_recall')# candidate items


        label_seq, dilate_input = self.model_graph(self.input_predict, train=False)
        model_para = self.model_para

        if is_negsample:
            logits_2D=dilate_input[:, -1:, :]
            recall_mat = tf.nn.embedding_lookup(self.softmax_w, self.input_recall)
            logits_2D = tf.matmul(logits_2D, tf.transpose(recall_mat,[0,2,1]))
            logits_2D=tf.reshape(logits_2D, [-1, tf.shape(self.input_recall)[1]])
            recall_bias = tf.nn.embedding_lookup(self.softmax_b, self.input_recall)
            logits_2D=tf.add(logits_2D,recall_bias)

        else:
            # logits = ops.conv1d(tf.nn.relu(dilate_input), model_para['item_size'], name='logits')
            logits = ops.conv1d(tf.nn.relu(dilate_input[:, -1:, :]), model_para['item_size'], name='logits')
            logits_2D = tf.reshape(logits, [-1, model_para['item_size']])


        probs_flat = tf.nn.softmax(logits_2D, name='softmax')

        self.g_probs = probs_flat
Exemplo n.º 7
0
    def get_masked_lm_output(self, bert_config, input_tensor,  positions,
                             label_ids, label_weights, trainable=True):
        """Get loss and log probs for the masked LM."""

        input_tensor = self.gather_indexes(input_tensor, positions)

        if self.is_negsample:
            logits_2D = input_tensor
            label_flat = tf.reshape(label_ids, [-1, 1])  # 1 is the number of positive example
            num_sampled = int(0.2 * self.model_para['item_size'])  # sample 20% as negatives
            loss = tf.nn.sampled_softmax_loss(self.softmax_w, self.softmax_b, label_flat, logits_2D,
                                              num_sampled,
                                              self.model_para['item_size'])
        else:
            sequence_shape = modeling.get_shape_list(positions)
            batch_size = sequence_shape[0]
            seq_length = sequence_shape[1]
            residual_channels = input_tensor.get_shape().as_list()[-1]
            input_tensor = tf.reshape(input_tensor, [-1, seq_length, residual_channels])

            logits = ops.conv1d(tf.nn.relu(input_tensor), self.model_para['item_size'], name='logits')
            logits_2D = tf.reshape(logits, [-1, self.model_para['item_size']])
            label_flat = tf.reshape(label_ids, [-1])
            loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label_flat, logits=logits_2D)
        loss = tf.reduce_mean(loss)

        # not sure the impact, 0.001 is empirical value, for large session data it is not very userful
        regularization = 0.001 * tf.reduce_mean([tf.nn.l2_loss(v) for v in tf.trainable_variables()])
        loss=loss+regularization

        return loss
Exemplo n.º 8
0
    def attend_image(self,
                     image_features,
                     encoded_question,
                     dropout_keep_prob=1.0):
        options = self.options
        img_dim = options['img_dim']
        img_channels = options['img_channels']
        with tf.variable_scope("Attention"):
            encoded_question_exp = tf.expand_dims(encoded_question, dim=1)
            encoded_question_tiled = tf.tile(encoded_question_exp,
                                             [1, img_dim * img_dim, 1])
            image_features_flat = tf.reshape(
                image_features, [-1, img_dim * img_dim, img_channels])

            combined_features = tf.concat(
                [image_features_flat, encoded_question_tiled], axis=2)
            combined_features = tf.nn.dropout(combined_features,
                                              dropout_keep_prob)
            combined_features = ops.conv1d(combined_features,
                                           512,
                                           name="conv_1")
            combined_features = tf.nn.relu(combined_features)
            combined_features = tf.nn.dropout(combined_features,
                                              dropout_keep_prob)
            logits = ops.conv1d(combined_features, 2, name="conv_2")
            prob1 = tf.nn.softmax(logits[:, :, 0], name="prob_map_1")
            prob2 = tf.nn.softmax(logits[:, :, 1], name="prob_map_2")

            glimplse1 = tf.reduce_sum(
                image_features_flat * tf.expand_dims(prob1, dim=2), 1)
            glimplse2 = tf.reduce_sum(
                image_features_flat * tf.expand_dims(prob2, dim=2), 1)

            attention_map1 = tf.reshape(prob1, [-1, img_dim, img_dim])
            attention_map2 = tf.reshape(prob2, [-1, img_dim, img_dim])

            context = tf.concat([glimplse1, glimplse2, encoded_question],
                                axis=1,
                                name="context")
            print context
            print prob1
            print prob2
            return context, attention_map1, attention_map2
Exemplo n.º 9
0
	def decoder(self, input_):
		options = self.options
		curr_input = input_
		for layer_no, dilation in enumerate(options['decoder_dilations']):
			layer_output = self.decode_layer(curr_input, dilation, layer_no)
			curr_input = layer_output


		processed_output = ops.conv1d(tf.nn.relu(layer_output), 
			options['n_target_quant'], 
			name = 'decoder_post_processing')

		return processed_output
Exemplo n.º 10
0
    def encode_question(self, question, model_type="bytenet", train=True):
        options = self.options
        question_mask = tf.sign(question)
        length = tf.cast(tf.reduce_sum(question_mask, 1), tf.int32)

        question_embedding = tf.nn.embedding_lookup(self.w_question_embedding,
                                                    question,
                                                    name="question_embedding")
        question_embedding = tf.nn.tanh(question_embedding)

        dropout_keep_prob = 1
        if train:
            dropout_keep_prob = options['dropout_keep_prob']

        # question_embedding = tf.nn.dropout(question_embedding, dropout_keep_prob)

        if model_type == "bytenet":
            curr_input = tf.nn.relu(
                ops.conv1d(question_embedding,
                           2 * options['residual_channels'],
                           name="question_scale_conv"))
            for layer_no, dilation in enumerate(options['dilations']):
                curr_input = ops.byetenet_residual_block(
                    curr_input,
                    dilation,
                    layer_no,
                    options['residual_channels'],
                    options['filter_width'],
                    causal=True,
                    train=train)
            model_output = curr_input
            model_output = ops.last_seq_element(model_output, length)

        elif model_type == "lstm":
            cell = tf.nn.rnn_cell.LSTMCell(
                num_units=options['residual_channels'], state_is_tuple=True)
            cell = tf.nn.rnn_cell.DropoutWrapper(
                cell, output_keep_prob=dropout_keep_prob)
            # cell = tf.nn.rnn_cell.MultiRNNCell([cell] * 2, state_is_tuple=True)
            outputs, last_states = tf.nn.dynamic_rnn(cell=cell,
                                                     dtype=tf.float32,
                                                     sequence_length=length,
                                                     inputs=question_embedding)
            model_output = ops.last_seq_element(outputs, length)

        return model_output
Exemplo n.º 11
0
    def decoder(self, input_, encoder_embedding=None):
        options = self.options
        curr_input = input_
        if encoder_embedding != None:
            # CONDITION WITH ENCODER EMBEDDING FOR THE TRANSLATION MODEL
            curr_input = tf.concat(2, [input_, encoder_embedding])
            print "Decoder Input", curr_input

        for layer_no, dilation in enumerate(options['decoder_dilations']):
            layer_output = self.decode_layer(curr_input, dilation, layer_no)
            curr_input = layer_output

        processed_output = ops.conv1d(tf.nn.relu(layer_output),
                                      options['n_target_quant'],
                                      name='decoder_post_processing')

        return processed_output
Exemplo n.º 12
0
    def decoder(self, input_, encoder_embedding=None):
        options = self.options
        curr_input = input_
        for layer_no, dilation in enumerate(options['decoder_dilations']):
            layer_output = self.decode_layer(curr_input, dilation, layer_no)

            # FOR TRANSLATION MODEL - add the input embedding after the first layer
            if encoder_embedding != None and layer_no == 0:
                print "Conditioning Encoder"
                layer_output = layer_output + encoder_embedding

            curr_input = layer_output

        processed_output = ops.conv1d(tf.nn.relu(layer_output),
                                      options['n_target_quant'],
                                      name='decoder_post_processing')

        return processed_output
Exemplo n.º 13
0
    def predict_graph(self, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()
        context_seq_en = self.itemseq_input_en
        context_seq_de = self.itemseq_input_de

        dilate_input = self.model_graph(context_seq_en, context_seq_de, train=False)
        model_para = self.model_para
        if self.is_negsample:
            logits_2D = tf.reshape(dilate_input[:, -1:, :], [-1, self.embedding_width])
            logits_2D = tf.matmul(logits_2D, self.softmax_w, transpose_b=True)
            logits_2D = tf.nn.bias_add(logits_2D, self.softmax_b)
        else:
            logits = ops.conv1d(tf.nn.relu(dilate_input)[:, -1:, :], model_para['item_size'], name='logits')
            logits_2D = tf.reshape(logits, [-1, model_para['item_size']])
        probs_flat = tf.nn.softmax(logits_2D)
        # self.g_probs = tf.reshape(probs_flat, [-1, tf.shape(self.input_predict)[1], model_para['item_size']])
        self.log_probs = probs_flat
Exemplo n.º 14
0
	def encoder(self, input_):
		options = self.options
		curr_input = input_
		for layer_no, dilation in enumerate(self.options['encoder_dilations']):
			layer_output = self.encode_layer(curr_input, dilation, layer_no)

			# ENCODE ONLY TILL THE INPUT LENGTH, conditioning should be 0 beyond that
			layer_output = tf.mul(layer_output, self.source_masked, name = 'layer_{}_output'.format(layer_no))

			curr_input = layer_output
		
		# TO BE CONCATENATED WITH TARGET EMBEDDING
		processed_output = tf.nn.relu( ops.conv1d(tf.nn.relu(layer_output), 
			options['residual_channels'], 
			name = 'encoder_post_processing') )

		processed_output = tf.mul(processed_output, self.source_masked_d, name = 'encoder_processed')

		return processed_output
Exemplo n.º 15
0
    def train_graph(self, is_negsample=False):
        self.itemseq_input = tf.placeholder('int32', [None, None],
                                            name='itemseq_input')
        label_seq, dilate_input = self.model_graph(self.itemseq_input,
                                                   train=True)

        model_para = self.model_para
        if is_negsample:
            logits_2D = tf.reshape(dilate_input,
                                   [-1, model_para['dilated_channels']])
            self.softmax_w = tf.get_variable(
                "softmax_w",
                [model_para['item_size'], model_para['dilated_channels']],
                tf.float32, tf.random_normal_initializer(0.0, 0.01))
            self.softmax_b = tf.get_variable("softmax_b",
                                             [model_para['item_size']],
                                             tf.float32,
                                             tf.constant_initializer(0.1))
            label_flat = tf.reshape(
                label_seq, [-1, 1])  # 1 is the number of positive example
            num_sampled = int(
                0.2 * model_para['item_size'])  #sample 20% as negatives
            # tf.nn.nce_loss
            loss = tf.nn.sampled_softmax_loss(self.softmax_w, self.softmax_b,
                                              label_flat, logits_2D,
                                              num_sampled,
                                              model_para['item_size'])
        else:
            logits = ops.conv1d(tf.nn.relu(dilate_input),
                                model_para['item_size'],
                                name='logits')
            logits_2D = tf.reshape(logits, [-1, model_para['item_size']])
            label_flat = tf.reshape(label_seq, [-1])
            loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
                labels=label_flat, logits=logits_2D)

        self.loss = tf.reduce_mean(loss)
        #regularization = 0.001 * tf.reduce_mean([tf.nn.l2_loss(v) for v in tf.trainable_variables()])
        #self.loss = self.loss + regularization
        self.arg_max_prediction = tf.argmax(
            logits_2D, 1
        )  #useless, if using negative sampling (i.e., negsample=True), it should be changed such as in predict_graph module
Exemplo n.º 16
0
    def predict_graph_onrecall(self, is_negsample=False, reuse=False):

        if reuse:
            tf.get_variable_scope().reuse_variables()
        self.input_predict = tf.placeholder('int32', [None, None],
                                            name='input_predict')
        self.input_recall = tf.placeholder(
            'int32', [None, None], name='input_recall')  # candidate items

        label_seq, dilate_input = self.model_graph(self.input_predict,
                                                   train=False)
        model_para = self.model_para

        if is_negsample:
            logits_2D = dilate_input[:, -1:, :]
            recall_mat = tf.nn.embedding_lookup(self.softmax_w,
                                                self.input_recall)
            logits_2D = tf.matmul(logits_2D,
                                  tf.transpose(recall_mat, [0, 2, 1]))
            logits_2D = tf.reshape(logits_2D,
                                   [-1, tf.shape(self.input_recall)[1]])
            recall_bias = tf.nn.embedding_lookup(self.softmax_b,
                                                 self.input_recall)
            logits_2D = tf.add(logits_2D, recall_bias)

        else:
            # logits = ops.conv1d(tf.nn.relu(dilate_input), model_para['item_size'], name='logits')
            logits = ops.conv1d(tf.nn.relu(dilate_input[:, -1:, :]),
                                model_para['item_size'],
                                name='logits')
            logits_2D = tf.reshape(logits, [-1, model_para['item_size']])

        probs_flat = tf.nn.softmax(logits_2D, name='softmax')

        self.g_probs = probs_flat
        # newly added for weishi, since each input is one user (i.e., a batch), in fact we just need to rank the first batch, the below code is to select top-5
        # self.top_k= tf.nn.top_k(self.g_probs[:,-1], k=model_para['top_k'],name='top-k')

        #be carefule with the top-k values since the index represents the orders of your recalled items but not the original order.
        self.top_k = tf.nn.top_k(self.g_probs,
                                 k=model_para['top_k'],
                                 name='top-k')
Exemplo n.º 17
0
    def build_model(self):
        options = self.options
        self.source_sentence = tf.placeholder('int32', 
            [None, None], name = 'source_sentence')
        self.target_sentence = tf.placeholder('int32', 
            [None, None], name = 'target_sentence')

        target_1 = self.target_sentence[:,0:-1]
        target_2 = self.target_sentence[:,1:]

        source_embedding = tf.nn.embedding_lookup(self.w_source_embedding, 
            self.source_sentence, name = "source_embedding")
        target_1_embedding = tf.nn.embedding_lookup(self.w_target_embedding, 
            target_1, name = "target_1_embedding")


        curr_input = source_embedding
        for layer_no, dilation in enumerate(options['encoder_dilations']):
            curr_input = ops.byetenet_residual_block(curr_input, dilation, 
                layer_no, options['residual_channels'], 
                options['encoder_filter_width'], causal = False, train = True)

        encoder_output = curr_input
        combined_embedding = target_1_embedding + encoder_output
        curr_input = combined_embedding
        for layer_no, dilation in enumerate(options['decoder_dilations']):
            curr_input = ops.byetenet_residual_block(curr_input, dilation, 
                layer_no, options['residual_channels'], 
                options['decoder_filter_width'], causal = True, train = True)

        logits = ops.conv1d(tf.nn.relu(curr_input), 
            options['target_vocab_size'], name = 'logits')
        print "logits", logits
        logits_flat = tf.reshape(logits, [-1, options['target_vocab_size']])
        target_flat = tf.reshape(target_2, [-1])
        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels = target_flat, logits = logits_flat)
        
        self.loss = tf.reduce_mean(loss)
        self.arg_max_prediction = tf.argmax(logits_flat, 1)
        tf.summary.scalar('loss', self.loss)
Exemplo n.º 18
0
def discriminator(wave_in):
    
      
    hi = wave_in
    
#    hi = tf.expand_dims(wave_in, -1)
        
#    batch_size = int(wave_in.get_shape()[0])


    # set up the disc_block function
   
#    with tf.variable_scope('d_model') as scope:
#        if reuse:
#            scope.reuse_variables()

    def disc_block(block_idx, input_, kwidth, nfmaps, bnorm, activation, name, pooling=2):

#        with tf.variable_scope('d_block_{}'.format(block_idx)):

                bias_init = None

                if bias_D_conv:
                    bias_init = tf.constant_initializer(0.)

                downconv_init = tf.truncated_normal_initializer(stddev=0.02)

##########################################
                hi_a = downconv(input_, nfmaps, kwidth=kwidth, pool=pooling,
                                init=downconv_init, bias_init=bias_init, name=name)
##########################################                    
               
#                    if bnorm:
#                        if not reuse:
#                            print('Applying VBN', end=' *** ')
#                        hi_a = vbn(hi_a, 'd_vbn_{}'.format(block_idx))
                
                if activation == 'leakyrelu':
                    hi = leakyrelu(hi_a)
                
                elif activation == 'relu':
                    hi = tf.nn.relu(hi_a)
                
                else:
                    raise ValueError('Unrecognized activation {} '
                                     'in D'.format(activation))
                return hi
                
                
       #%%         
#            beg_size = canvas_size
          
            # apply input noisy layer to real and fake samples
            
    hi = gaussian_noise_layer(hi, disc_noise_std)
    
    for block_idx, fmaps in enumerate(d_num_fmaps):
        
        hi = disc_block(block_idx, hi, 31, d_num_fmaps[block_idx], False, 'leakyrelu',
                        name='db_{}_{}'.format(block_idx,fmaps))
    
#    hi_f = flatten(hi)  #keeps batch size, flatten everything else
    
    #hi_f = tf.nn.dropout(hi_f, self.keep_prob_var)
    
    d_logit_out = conv1d(hi, kwidth=1, num_kernels=1,
                         init=tf.truncated_normal_initializer(stddev=0.02),
                         name='logits_conv')
    
    d_logit_out = tf.squeeze(d_logit_out)  #removes dimensions of 1
    
    d_logit_out = flatten(d_logit_out) 
    
    # all logits connected to 1 single neuron for binary classification
    try:
        with tf.variable_scope('fc', reuse=True) as fc_sc:
            tf.get_variable_scope(). reuse_variables()
            d_logit_out = fully_connected(d_logit_out, 1, activation_fn=None, scope=fc_sc)
            print('FC_reused')
            
    except ValueError:
        with tf.variable_scope('fc') as fc_sc:
            d_logit_out = fully_connected(d_logit_out, 1, activation_fn=None, scope=fc_sc)
            print('FC created')

    return d_logit_out    
    
    
#%%

#disable_vbn= False
#
#def vbn(tensor, name):
#    if disable_vbn:
#        class Dummy(object):
#            # Do nothing here, no bnorm
#            def __init__(self, tensor, ignored):
#                self.reference_output=tensor
#            def __call__(self, x):
#                return x
#        VBN_cls = Dummy
#    else:
#        VBN_cls = VBN
#    if not hasattr(self, name):
#        vbn = VBN_cls(tensor, name)
#        setattr(self, name, vbn)
#        return vbn.reference_output
#    vbn = getattr(self, name)
#    return vbn(tensor)





#%% Testing blocks
#
#a=tf.random_normal([100, 2**14, 1])
#
#b, skippies=encoder(a, True, 'enc')
#
#c= decoder(b, skippies, 'dec')
#
#d=discriminator(a)


















    
    
    
    
Exemplo n.º 19
0
def discriminator(wave_in, reuse=True):

    hi = wave_in

    hi = tf.expand_dims(wave_in, -1)

    #    batch_size = int(wave_in.get_shape()[0])

    # set up the disc_block function

    with tf.variable_scope('d_model') as scope:
        if reuse:
            scope.reuse_variables()

        def disc_block(block_idx,
                       input_,
                       kwidth,
                       nfmaps,
                       bnorm,
                       activation,
                       pooling=2):

            with tf.variable_scope('d_block_{}'.format(block_idx)):

                if not reuse:
                    print('D block {} input shape: {}'
                          ''.format(block_idx, input_.get_shape()),
                          end=' *** ')

                bias_init = None

                if bias_D_conv:
                    if not reuse:
                        print('biasing D conv', end=' *** ')
                    bias_init = tf.constant_initializer(0.)

                downconv_init = tf.truncated_normal_initializer(stddev=0.02)

                ##########################################
                hi_a = downconv(input_,
                                nfmaps,
                                kwidth=kwidth,
                                pool=pooling,
                                init=downconv_init,
                                bias_init=bias_init)
                ##########################################

                if not reuse:
                    print('downconved shape: {} '
                          ''.format(hi_a.get_shape()),
                          end=' *** ')

                if bnorm:
                    if not reuse:
                        print('Applying VBN', end=' *** ')
                    hi_a = vbn(hi_a, 'd_vbn_{}'.format(block_idx))

                if activation == 'leakyrelu':
                    if not reuse:
                        print('Applying Lrelu', end=' *** ')
                    hi = leakyrelu(hi_a)

                elif activation == 'relu':
                    if not reuse:
                        print('Applying Relu', end=' *** ')
                    hi = tf.nn.relu(hi_a)

                else:
                    raise ValueError('Unrecognized activation {} '
                                     'in D'.format(activation))
                return hi

    #%%
#            beg_size = canvas_size

# apply input noisy layer to real and fake samples

        hi = gaussian_noise_layer(hi, disc_noise_std)

        if not reuse:
            print('*** Discriminator summary ***')

        for block_idx, fmaps in enumerate(d_num_fmaps):

            hi = disc_block(block_idx, hi, 31, d_num_fmaps[block_idx], True,
                            'leakyrelu')

            if not reuse:
                print()

        if not reuse:
            print('discriminator deconved shape: ', hi.get_shape())

        hi_f = flatten(hi)  #keeps batch size, flatten everything else

        #hi_f = tf.nn.dropout(hi_f, self.keep_prob_var)

        d_logit_out = conv1d(hi,
                             kwidth=1,
                             num_kernels=1,
                             init=tf.truncated_normal_initializer(stddev=0.02),
                             name='logits_conv')

        d_logit_out = tf.squeeze(d_logit_out)  #removes dimensions of 1

        # all logits connected to 1 single neuron for binary classification
        d_logit_out = fully_connected(d_logit_out, 1, activation_fn=None)

        if not reuse:
            print('discriminator output shape: ', d_logit_out.get_shape())
            print('*****************************')

        return d_logit_out
def res_block(inp, dilation, k_w, causal, name):
	h = ops.conv1d(inp, 128, dilation=dilation, k_w=k_w, causal=causal, name=name)
	h = tf.nn.relu(h)

	return h + inp
Exemplo n.º 21
0
    def forward(self,
                x,
                meta_loss=None,
                meta_step_size=None,
                stop_gradient=False):

        x = conv1d(inputs=x,
                   weight=self.conv1.weight,
                   bias=self.conv1.bias,
                   meta_step_size=meta_step_size,
                   meta_loss=meta_loss,
                   stop_gradient=stop_gradient)
        x = self.bn1(x)
        x = self.act(x)
        x = self.pooling(x)
        x = self.dropout(x)

        x = conv1d(inputs=x,
                   weight=self.conv2.weight,
                   bias=self.conv2.bias,
                   meta_step_size=meta_step_size,
                   meta_loss=meta_loss,
                   stop_gradient=stop_gradient)
        x = self.bn2(x)
        x = self.act(x)
        x = self.pooling(x)
        x = self.dropout(x)

        x = conv1d(inputs=x,
                   weight=self.conv3.weight,
                   bias=self.conv3.bias,
                   meta_step_size=meta_step_size,
                   meta_loss=meta_loss,
                   stop_gradient=stop_gradient)
        x = self.bn3(x)
        x = self.act(x)
        x = self.pooling(x)
        x = self.dropout(x)

        x = torch.mean(x, dim=2)

        x = linear(inputs=x,
                   weight=self.fc1.weight,
                   bias=self.fc1.bias,
                   meta_loss=meta_loss,
                   meta_step_size=meta_step_size,
                   stop_gradient=stop_gradient)
        x = self.act(x)
        x = self.dropout(x)

        x = linear(inputs=x,
                   weight=self.fc2.weight,
                   bias=self.fc2.bias,
                   meta_loss=meta_loss,
                   meta_step_size=meta_step_size,
                   stop_gradient=stop_gradient)
        x = self.act(x)
        x = self.dropout(x)

        x = linear(inputs=x,
                   weight=self.fc3.weight,
                   bias=self.fc3.bias,
                   meta_loss=meta_loss,
                   meta_step_size=meta_step_size,
                   stop_gradient=stop_gradient)

        end_points = {'Predictions': F.softmax(input=x, dim=-1)}

        return x, end_points
Exemplo n.º 22
0
    def build_translator(self, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        options = self.options
        self.t_source_sentence = tf.placeholder('int32', [None, None],
                                                name='source_sentence')
        self.t_target_sentence = tf.placeholder('int32', [None, None],
                                                name='target_sentence')

        source_embedding = tf.nn.embedding_lookup(self.w_source_embedding,
                                                  self.t_source_sentence,
                                                  name="source_embedding")
        target_embedding = tf.nn.embedding_lookup(self.w_target_embedding,
                                                  self.t_target_sentence,
                                                  name="target_embedding")

        curr_input = source_embedding
        for layer_no, dilation in enumerate(options['encoder_dilations']):
            if options['layer_norm']:
                curr_input = ops.byetenet_residual_block(
                    curr_input,
                    dilation,
                    layer_no,
                    options['residual_channels'],
                    options['encoder_filter_width'],
                    causal=False,
                    train=False)
            else:
                curr_input = ops.byetenet_residual_block_without_ln(
                    curr_input,
                    dilation,
                    layer_no,
                    options['residual_channels'],
                    options['encoder_filter_width'],
                    causal=False,
                    train=False)

        encoder_output = curr_input[:,
                                    0:tf.shape(self.t_target_sentence)[1], :]

        combined_embedding = target_embedding + encoder_output
        curr_input = combined_embedding
        for layer_no, dilation in enumerate(options['decoder_dilations']):
            curr_input = ops.byetenet_residual_block(
                curr_input,
                dilation,
                layer_no,
                options['residual_channels'],
                options['decoder_filter_width'],
                causal=True,
                train=False)

        logits = ops.conv1d(tf.nn.relu(curr_input),
                            options['target_vocab_size'],
                            name='logits')
        logits_flat = tf.reshape(logits, [-1, options['target_vocab_size']])
        probs_flat = tf.nn.softmax(logits_flat)

        self.t_probs = tf.reshape(
            probs_flat,
            [-1, tf.shape(logits)[1], options['target_vocab_size']])
Exemplo n.º 23
0
  def discriminator(self, input_, cond_):
    if self.norm_type == "batch_norm":
      from ops import batch_norm as norm
    elif self.norm_type == "instance_norm":
      from ops import instance_norm as norm
    else:
      raise Exception("Unknown normalization layer!!!")

    if not self.norm_type == "instance_norm":
      input_ = tf.nn.dropout(input_, self.kp_)

    if self.d_arch == 0:
      h0 = lrelu(conv1d(input_, 128, k_w=4, name="conv1d_h0"))
      h1 = lrelu(norm(conv1d(h0, 256, k_w=4, name="conv1d_h1"), "bn1"))
      h1 = tf.concat([h1, tf.tile(cond_, [1, int(h1.shape[1]), 1])], axis=-1)
      h2 = lrelu(norm(conv1d(h1, 512, k_w=4, name="conv1d_h2"), "bn2"))
      h2 = tf.concat([h2, tf.tile(cond_, [1, int(h2.shape[1]), 1])], axis=-1)
      h3 = lrelu(norm(conv1d(h2, 1024, k_w=4, name="conv1d_h3"), "bn3"))
      h3 = tf.concat([h3, tf.tile(cond_, [1, int(h3.shape[1]), 1])], axis=-1)
      logits = conv1d(h3, 1, k_w=4, name="logits", padding="VALID")
    elif self.d_arch == 1:
      h0 = lrelu(conv1d(input_, 64, k_w=4, name="conv1d_h0"))
      h1 = lrelu(norm(conv1d(h0, 128, k_w=4, name="conv1d_h1"), "bn1"))
      h1 = tf.concat([h1, tf.tile(cond_, [1, int(h1.shape[1]), 1])], axis=-1)
      h2 = lrelu(norm(conv1d(h1, 256, k_w=4, name="conv1d_h2"), "bn2"))
      h2 = tf.concat([h2, tf.tile(cond_, [1, int(h2.shape[1]), 1])], axis=-1)
      h3 = lrelu(norm(conv1d(h2, 512, k_w=4, name="conv1d_h3"), "bn3"))
      h3 = tf.concat([h3, tf.tile(cond_, [1, int(h3.shape[1]), 1])], axis=-1)
      logits = conv1d(h3, 1, k_w=4, name="logits", padding="VALID")
    elif self.d_arch == 2:
      h0 = lrelu(conv1d(input_, 32, k_w=4, name="conv1d_h0"))
      h1 = lrelu(norm(conv1d(h0, 64, k_w=4, name="conv1d_h1"), "bn1"))
      h1 = tf.concat([h1, tf.tile(cond_, [1, int(h1.shape[1]), 1])], axis=-1)
      h2 = lrelu(norm(conv1d(h1, 128, k_w=4, name="conv1d_h2"), "bn2"))
      h2 = tf.concat([h2, tf.tile(cond_, [1, int(h2.shape[1]), 1])], axis=-1)
      h3 = lrelu(norm(conv1d(h2, 256, k_w=4, name="conv1d_h3"), "bn3"))
      h3 = tf.concat([h3, tf.tile(cond_, [1, int(h3.shape[1]), 1])], axis=-1)
      logits = conv1d(h3, 1, k_w=4, name="logits", padding="VALID")
    elif self.d_arch == 3:
      h0 = lrelu(conv1d(input_, 16, k_w=4, name="conv1d_h0"))
      h1 = lrelu(norm(conv1d(h0, 32, k_w=4, name="conv1d_h1"), "bn1"))
      h1 = tf.concat([h1, tf.tile(cond_, [1, int(h1.shape[1]), 1])], axis=-1)
      h2 = lrelu(norm(conv1d(h1, 64, k_w=4, name="conv1d_h2"), "bn2"))
      h2 = tf.concat([h2, tf.tile(cond_, [1, int(h2.shape[1]), 1])], axis=-1)
      h3 = lrelu(norm(conv1d(h2, 128, k_w=4, name="conv1d_h3"), "bn3"))
      h3 = tf.concat([h3, tf.tile(cond_, [1, int(h3.shape[1]), 1])], axis=-1)
      logits = conv1d(h3, 1, k_w=4, name="logits", padding="VALID")
    else:
      raise Exception("Unknown discriminator architecture!!!")

    return tf.reshape(logits, [self.batch_size, 1])