Exemplo n.º 1
0
 def discriminator(x, label):
     with tf.variable_scope('Discriminator'):
         if layers > 1:
             with tf.variable_scope('rgb_layer_{}'.format(layers - 2)):
                 d0 = pool(x)
                 d0 = leaky_relu(conv2d(d0, self.channels[layers - 1], 1))
         with tf.variable_scope('rgb_layer_{}'.format(layers - 1)):
             d1 = leaky_relu(conv2d(x, self.channels[layers], 1))
         for i in reversed(range(layers)):
             with tf.variable_scope('layer_{}'.format(i)):
                 if i == 0:
                     d1 = minibatch_stddev(d1)
                 with tf.variable_scope('1'):
                     d1 = leaky_relu(conv2d(d1, self.channels[i]))
                 with tf.variable_scope('2'):
                     if i == 0:
                         d1 = leaky_relu(conv2d(d1, self.channels[0], 2, 2))
                     else:
                         d1 = leaky_relu(conv2d(d1, self.channels[i]))
                 if i > 0:
                     d1 = pool(d1)
                 if i == layers - 1 and layers > 1:
                     d1 = self._reparameterize(d0, d1)
         with tf.variable_scope('dense'):
             d = tf.concat([tf.layers.flatten(d1), tf.layers.flatten(label)], axis=1)
             d = dense_layer(d, 1)
     return d
Exemplo n.º 2
0
 def generator(z, label):
     with tf.variable_scope('Generator'):
         z = z[:self.batch_size[layers]]
         with tf.variable_scope('latent_vector'):
             g1 = tf.expand_dims(tf.expand_dims(z, axis=-1), axis=-1)
             g1 = tf.concat([g1, label], axis=1)
         for i in range(layers):
             with tf.variable_scope('layer_{}'.format(i)):
                 if i > 0:
                     g1 = resize(g1)
                 if i == layers - 1 and layers > 1:
                     g0 = g1
                 with tf.variable_scope('1'):
                     if i == 0:
                         g1 = pixelwise_norm(leaky_relu(conv2d_transpose(
                             g1, [tf.shape(g1)[0], self.channels[0], 2, 8]
                         )))
                     else:
                         g1 = pixelwise_norm(leaky_relu(conv2d(g1, self.channels[i])))
                 with tf.variable_scope('2'):
                     g1 = pixelwise_norm(leaky_relu(conv2d(g1, self.channels[i])))
         with tf.variable_scope('rgb_layer_{}'.format(layers - 1)):
             g1 = conv2d(g1, self.channel_num, 1, weight_norm=False)
         if layers > 1:
             with tf.variable_scope('rgb_layer_{}'.format(layers - 2)):
                 g0 = conv2d(g0, self.channel_num, 1, weight_norm=False)
                 g = self._reparameterize(g0, g1)
         else:
             g = g1
     return tf.tanh(g)
Exemplo n.º 3
0
def up_sample4(ipt, name='up_sample4', reuse=False, is_training=True):
    with tf.variable_scope(name):
        c3s1k256 = ops.conv2d(ipt,
                              256,
                              3,
                              1,
                              norm=None,
                              activation=None,
                              reuse=reuse,
                              is_training=is_training,
                              name='c3s1k256_1')
        d_to_s_1 = tf.depth_to_space(c3s1k256, 2)
        relu1 = ops.leaky_relu(d_to_s_1)
        c3s1k256 = ops.conv2d(relu1,
                              256,
                              3,
                              1,
                              norm=None,
                              activation=None,
                              reuse=reuse,
                              is_training=is_training,
                              name='c3s1k256_2')
        d_to_s_2 = tf.depth_to_space(c3s1k256, 2)
        relu2 = ops.leaky_relu(d_to_s_2)
        return ops.conv2d(relu2,
                          3,
                          3,
                          1,
                          1,
                          norm=None,
                          activation=None,
                          name='c3s1k3',
                          reuse=reuse,
                          is_training=is_training)
Exemplo n.º 4
0
def dblock(name, inputs, num_filters, data_format):
    with tf.variable_scope(name):
        x = ops.conv2d('conv', inputs, num_filters[0], 3, data_format)
        x = ops.leaky_relu(x)
        x = ops.conv2d_down('conv_down', x, num_filters[1], 3, data_format)
        x = ops.leaky_relu(x)
        return x
Exemplo n.º 5
0
def gblock(name, inputs, filters, data_format):
    with tf.variable_scope(name):
        x = ops.conv2d_up('conv_up', inputs, filters, 3, data_format)
        x = ops.leaky_relu(x)
        x = ops.pixel_norm(x, data_format)
        x = ops.conv2d('conv', x, filters, 3, data_format)
        x = ops.leaky_relu(x)
        x = ops.pixel_norm(x, data_format)
        return x
Exemplo n.º 6
0
def generator(x,
              last_layer_resolution,
              cfg,
              is_training=True,
              scope='Generator'):
    def rname(resolution):
        return str(resolution) + 'x' + str(resolution)

    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
        with tf.variable_scope("4x4"):
            fn4 = cfg.resolution_to_filt_num[4]
            x = ops.pixel_norm(x, cfg.data_format)
            x = ops.dense('dense', x, 4 * 4 * fn4, cfg.data_format)
            if cfg.data_format == 'NHWC':
                x = tf.reshape(x, [-1, 4, 4, fn4])
            else:
                x = tf.reshape(x, [-1, fn4, 4, 4])
            x = ops.leaky_relu(x)
            x = ops.pixel_norm(x, cfg.data_format)
            x = ops.conv2d('conv', x, fn4, 3, cfg.data_format)
            x = ops.leaky_relu(x)
            x = ops.pixel_norm(x, cfg.data_format)
        resolution = 8
        prev_x = None
        while resolution <= last_layer_resolution:
            filt_num = cfg.resolution_to_filt_num[resolution]
            prev_x = x
            x = gblock(rname(resolution), x, filt_num, cfg.data_format)
            resolution *= 2
        resolution = resolution // 2
        if resolution > cfg.starting_resolution:
            t = tf.get_variable(
                rname(resolution) + '_t',
                shape=[],
                collections=[tf.GraphKeys.GLOBAL_VARIABLES, "lerp"],
                dtype=tf.float32,
                initializer=tf.zeros_initializer(),
                trainable=False)
            x1 = ops.to_rgb('to_rgb_' + rname(resolution // 2), prev_x,
                            cfg.data_format)
            x1 = ops.upscale2d(x1, cfg.data_format)
            x2 = ops.to_rgb('to_rgb_' + rname(resolution), x, cfg.data_format)
            x = ops.lerp_clip(x1, x2, t)
        else:
            x = ops.to_rgb('to_rgb_' + rname(resolution), x, cfg.data_format)
        x_shape = utils.int_shape(x)
        assert (resolution == x_shape[1 if cfg.data_format == 'NHWC' else 3])
        assert (resolution == x_shape[2])
        return x
Exemplo n.º 7
0
def discriminator(images, labels, reuse=False):
    with tf.variable_scope("discriminator") as scope:
        if reuse:
            scope.reuse_variables()

        # conv1
        conv1 = ops.conv_2d(images, 64, scope="conv1")

        # leakly ReLu
        h1 = ops.leaky_relu(conv1)

        # conv2
        conv2 = ops.conv_2d(h1, 128, scope="conv2")

        # batch norm
        norm2 = ops.batch_norm(conv2, scope="batch_norm2", is_training=True)

        # leaky ReLU
        h2 = ops.leaky_relu(norm2)

        # conv3
        conv3 = ops.conv_2d(h2, 256, scope="conv3")

        # batch norm
        norm3 = ops.batch_norm(conv3, scope="batch_norm3", is_training=True)

        # leaky ReLU
        h3 = ops.leaky_relu(norm3)

        # conv4
        conv4 = ops.conv_2d(h3, 512, scope="conv4")

        # batch norm
        norm4 = ops.batch_norm(conv4, scope="batch_norm4", is_training=True)

        # leaky ReLU
        h4 = ops.leaky_relu(norm4)

        # reshape
        h4_reshape = tf.reshape(h4, [FLAGS.batch_size, -1])

        # source logits
        source_logits = ops.fc(h4_reshape, 1, scope="source_logits")

        # class logits
        class_logits = ops.fc(
            h4_reshape, FLAGS.n_classes, scope="class_logits")

        return source_logits, class_logits
Exemplo n.º 8
0
    def generator(self, inputs, reuse=False, is_training=True):
        ####################################################
        # Define the structure of generator, you may use the
        # generator structure of DCGAN. ops.py defines some
        # layers that you may use.
        ####################################################
        with tf.variable_scope('generator', reuse=reuse):
            size = self.image_size  # 64
            s2 = self.get_required_conv_out_size(size, 2)  # 32
            s4 = self.get_required_conv_out_size(s2, 2)  # 16
            s8 = self.get_required_conv_out_size(s4, 2)  # 8
            s16 = self.get_required_conv_out_size(s8, 2)  # 4
            img_ch = 3

            # project z and reshape
            fc1 = ops.linear(inputs, self.image_size * 8 * s16**2,
                             'fc')  # [11,8192]
            fc1_reshaped = tf.reshape(fc1, [-1, s16, s16, self.image_size * 8])
            h0 = ops.leaky_relu(fc1_reshaped)  #[11,4,4,512]

            conv1 = ops.convt2d(h0,
                                [self.batch_size, s8, s8, self.image_size * 4],
                                name='g_h1')
            h1 = ops.leaky_relu(conv1)  # [11,8,8,256]

            conv2 = ops.convt2d(h1,
                                [self.batch_size, s4, s4, self.image_size * 2],
                                name='g_h2')
            h2 = ops.leaky_relu(conv2)  # [11,16,16,128]

            conv3 = ops.convt2d(h2,
                                [self.batch_size, s2, s2, self.image_size * 1],
                                name='g_h3')
            h3 = ops.leaky_relu(conv3)  # [11,32,32,64]

            h4 = ops.convt2d(h3, [self.batch_size, size, size, img_ch],
                             name='g_h4')  # [11,64,64,3]
            return h4
Exemplo n.º 9
0
def discriminator(image, reuse=False):
    with tf.variable_scope('discriminator', reuse=reuse):
        conv_1 = ops.conv_2d(image, 64, scope='conv_1')
        relu_1 = ops.leaky_relu(conv_1)

        conv_2 = ops.conv_2d(relu_1, 128, scope='conv_2')
        conv_2_norm = ops.batch_norm(conv_2, True, scope="batch_norm_2")
        relu_2 = ops.leaky_relu(conv_2_norm)

        conv_3 = ops.conv_2d(relu_2, 256, scope='conv_3')
        conv_3_norm = ops.batch_norm(conv_3, True, scope="batch_norm_3")
        relu_3 = ops.leaky_relu(conv_3_norm)

        conv_4 = ops.conv_2d(relu_3, 512, scope='conv_4')
        conv_4_norm = ops.batch_norm(conv_4, True, scope="batch_norm_4")
        relu_4 = ops.leaky_relu(conv_4_norm)

        relu_4_flat = tf.reshape(relu_4, [flags.batch_size, -1])

        source_logits = ops.full_connect(relu_4_flat, 1, scope='source_logits')
        class_logits = ops.full_connect(relu_4_flat, 1, scope='class_logits')

        return source_logits, class_logits
Exemplo n.º 10
0
 def __call__(self, inputs, train_phase):
     with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE):
         # inputs = tf.random_crop(inputs, [-1, 70, 70, 3])
         inputs = conv("conv1_1", inputs, 64, 3, 2)
         inputs = leaky_relu(inputs, 0.2)
         # inputs = conv("conv1_2", inputs, 64, 3, is_SN=True)
         # inputs = leaky_relu(inputs, 0.2)
         inputs = conv("conv2_1", inputs, 128, 3, 2)
         inputs = batchnorm(inputs, train_phase, "BN1")
         inputs = leaky_relu(inputs, 0.2)
         # inputs = conv("conv2_2", inputs, 128, 3, is_SN=True)
         # inputs = leaky_relu(inputs, 0.2)
         inputs = conv("conv3_1", inputs, 256, 3, 2)
         inputs = batchnorm(inputs, train_phase, "BN2")
         inputs = leaky_relu(inputs, 0.2)
         # inputs = conv("conv3_2", inputs, 256, 3, is_SN=True)
         # inputs = leaky_relu(inputs, 0.2)
         inputs = conv("conv4_1", inputs, 512, 3, 2)
         inputs = batchnorm(inputs, train_phase, "BN3")
         inputs = leaky_relu(inputs, 0.2)
         # inputs = fully_connected("fc", inputs, 512, is_SN=True)
         output = fully_connected("output", inputs, 1)
     return output
Exemplo n.º 11
0
def discriminator(x, resolution, cfg, is_training=True, scope='Discriminator'):
    assert (cfg.data_format == 'NCHW' or cfg.data_format == 'NHWC')

    def rname(resolution):
        return str(resolution) + 'x' + str(resolution)

    def fmap(resolution):
        return cfg.resolution_to_filt_num[resolution]

    x_shape = utils.int_shape(x)
    assert (resolution == x_shape[1 if cfg.data_format == 'NHWC' else 3])
    assert (resolution == x_shape[2])
    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
        if resolution > cfg.starting_resolution:
            x1 = ops.downscale2d(x, cfg.data_format)
            x1 = ops.from_rgb('from_rgb_' + rname(resolution // 2), x1,
                              fmap(resolution // 2), cfg.data_format)
            x2 = ops.from_rgb('from_rgb_' + rname(resolution), x,
                              fmap(resolution // 2), cfg.data_format)
            t = tf.get_variable(
                rname(resolution) + '_t',
                shape=[],
                dtype=tf.float32,
                collections=[tf.GraphKeys.GLOBAL_VARIABLES, "lerp"],
                initializer=tf.zeros_initializer(),
                trainable=False)
            num_filters = [fmap(resolution), fmap(resolution // 2)]
            x2 = dblock(rname(resolution), x2, num_filters, cfg.data_format)
            x = ops.lerp_clip(x1, x2, t)
            resolution = resolution // 2
        else:
            x = ops.from_rgb('from_rgb_' + rname(resolution), x,
                             fmap(resolution), cfg.data_format)
        while resolution >= 4:
            if resolution == 4:
                x = ops.minibatch_stddev_layer(x, cfg.data_format)
            num_filters = [fmap(resolution), fmap(resolution // 2)]
            x = dblock(rname(resolution), x, num_filters, cfg.data_format)
            resolution = resolution // 2

        x = ops.dense('2x2', x, fmap(resolution), cfg.data_format)
        x = ops.leaky_relu(x)

        x = ops.dense('output', x, 1, cfg.data_format)

        return x
Exemplo n.º 12
0
def encoder(x, scope="spade_encoder"):
  """Encoder that outputs global N(mu, sig) parameters.

  Args:
    x: [B, H, W, 4] an RGBD image (usually the initial image) which is used to
      sample noise from a distirbution to feed into the refinement
      network. Range [0, 1].
    scope: (str) variable scope

  Returns:
    (mu, logvar) are [B, 256] tensors of parameters defining a normal
      distribution to sample from.
  """

  x = 2 * x - 1
  num_channel = 16

  with tf.compat.v1.variable_scope(scope, reuse=tf.compat.v1.AUTO_REUSE):
    x = ops.sn_conv(x, num_channel, kernel_size=3, stride=2,
                    use_bias=True, use_spectral_norm=True, scope="conv_0")
    x = ops.instance_norm(x, scope="inst_norm_0")
    x = ops.leaky_relu(x, 0.2)

    x = ops.sn_conv(x, 2 * num_channel, kernel_size=3, stride=2,
                    use_bias=True, use_spectral_norm=True, scope="conv_1")
    x = ops.instance_norm(x, scope="inst_norm_1")
    x = ops.leaky_relu(x, 0.2)

    x = ops.sn_conv(x, 4 * num_channel, kernel_size=3, stride=2,
                    use_bias=True, use_spectral_norm=True, scope="conv_2")
    x = ops.instance_norm(x, scope="inst_norm_2")
    x = ops.leaky_relu(x, 0.2)

    x = ops.sn_conv(x, 8 * num_channel, kernel_size=3, stride=2,
                    use_bias=True, use_spectral_norm=True, scope="conv_3")
    x = ops.instance_norm(x, scope="inst_norm_3")
    x = ops.leaky_relu(x, 0.2)

    x = ops.sn_conv(x, 8 * num_channel, kernel_size=3, stride=2,
                    use_bias=True, use_spectral_norm=True, scope="conv_4")
    x = ops.instance_norm(x, scope="inst_norm_4")
    x = ops.leaky_relu(x, 0.2)

    x = ops.sn_conv(x, 8 * num_channel, kernel_size=3, stride=2,
                    use_bias=True, use_spectral_norm=True, scope="conv_5")
    x = ops.instance_norm(x, scope="inst_norm_5")
    x = ops.leaky_relu(x, 0.2)

    mu = ops.fully_connected(x, config.DIM_OF_STYLE_EMBEDDING,
                             scope="linear_mu")
    logvar = ops.fully_connected(x, config.DIM_OF_STYLE_EMBEDDING,
                                 scope="linear_logvar")
  return mu, logvar
Exemplo n.º 13
0
def spade_resblock(tensor,
                   condition,
                   channel_out,
                   use_spectral_norm=False,
                   scope="spade_resblock"):
    """A SPADE resblock.

  Args:
    tensor: [B, H, W, C] image to be generated
    condition: [B, H, W, D] conditioning image to compute affine
      normalization parameters.
    channel_out: (int) The number of channels of the output tensor
    use_spectral_norm: (bool) If true, use spectral normalization in conv layers
    scope: (str) The variable scope

  Returns:
    The output of a spade residual block
  """

    channel_in = tensor.get_shape().as_list()[-1]
    channel_middle = min(channel_in, channel_out)

    with tf.compat.v1.variable_scope(scope, reuse=tf.compat.v1.AUTO_REUSE):
        x = spade(tensor,
                  condition,
                  use_spectral_norm=use_spectral_norm,
                  scope="spade_0")
        x = ops.leaky_relu(x, 0.2)
        # This one always uses spectral norm.
        x = ops.sn_conv(x,
                        channel_middle,
                        kernel_size=3,
                        use_spectral_norm=True,
                        scope="conv_0")

        x = spade(x,
                  condition,
                  use_spectral_norm=use_spectral_norm,
                  scope="spade_1")
        x = ops.leaky_relu(x, 0.2)
        x = ops.sn_conv(x,
                        channel_out,
                        kernel_size=3,
                        use_spectral_norm=True,
                        scope="conv_1")

        if channel_in != channel_out:
            x_in = spade(tensor,
                         condition,
                         use_spectral_norm=use_spectral_norm,
                         scope="shortcut_spade")
            x_in = ops.sn_conv(x_in,
                               channel_out,
                               kernel_size=1,
                               stride=1,
                               use_bias=False,
                               use_spectral_norm=True,
                               scope="shortcut_conv")
        else:
            x_in = tensor

        out = x_in + x

    return out
def discriminator(images, reuse=False):
    with tf.variable_scope("discriminator") as scope:
        if reuse:
            scope.reuse_variables()

        # conv1
        conv1 = ops.conv_2d(images, 64, scope="conv1")

        # leakly ReLu
        h1 = ops.leaky_relu(conv1)

        # conv2
        conv2 = ops.conv_2d(h1, 128, scope="conv2")

        # batch norm
        norm2 = ops.batch_norm(conv2,
                               scope="batch_norm2",
                               is_training=FLAGS.is_train)

        # leaky ReLU
        h2 = ops.leaky_relu(norm2)

        # conv3
        conv3 = ops.conv_2d(h2, 256, scope="conv3")
        # batch norm
        norm3 = ops.batch_norm(conv3,
                               scope="batch_norm3",
                               is_training=FLAGS.is_train)

        # leaky ReLU
        h3 = ops.leaky_relu(norm3)
        # conv4
        conv4 = ops.conv_2d(h3, 512, scope="conv4")

        # batch norm
        norm4 = ops.batch_norm(conv4,
                               scope="batch_norm4",
                               is_training=FLAGS.is_train)

        # leaky ReLU
        h4 = ops.leaky_relu(norm4)

        conv5 = ops.conv_2d(h4, 1024, scope="conv5")

        conv5 = tf.nn.dropout(conv5, 0.5, name='conv_5_drop_out')

        norm5 = ops.batch_norm(conv5,
                               scope="batch_norm5",
                               is_training=FLAGS.is_train)

        h5 = ops.leaky_relu(norm5)
        # reshape
        h5_reshape = tf.reshape(h5, [FLAGS.batch_size, -1])

        # source logits
        source_logits = ops.fc(h5_reshape, 1, scope="source_logits")

        # class logits
        class_logits = ops.fc(h5_reshape,
                              FLAGS.num_classes,
                              scope="class_logits",
                              decay=4e-3)

        return source_logits, class_logits
Exemplo n.º 15
0
def refinement_network(rgbd, mask, z, scope="spade_generator"):
    """Refines rgbd, mask based on noise z.

  H, W should be divisible by 2 ** num_up_layers

  Args:
    rgbd: [B, H, W, 4] the rendered view to be refined
    mask: [B, H, W, 1] binary mask of unknown regions. 1 where known and 0 where
      unknown
    z: [B, D] a noise vector to be used as noise for the generator
    scope: (str) variable scope

  Returns:
    [B, H, W, 4] refined rgbd image.
  """
    img = 2 * rgbd - 1
    img = tf.concat([img, mask], axis=-1)

    num_channel = 32

    num_up_layers = 5
    out_channels = 4  # For RGBD

    batch_size, im_height, im_width, unused_c = rgbd.get_shape().as_list()

    init_h = im_height // (2**num_up_layers)
    init_w = im_width // (2**num_up_layers)

    with tf.compat.v1.variable_scope(scope, reuse=tf.compat.v1.AUTO_REUSE):
        x = ops.fully_connected(z, 16 * num_channel * init_h * init_w,
                                "fc_expand_z")
        x = tf.reshape(x, [batch_size, init_h, init_w, 16 * num_channel])
        x = spade.spade_resblock(
            x,
            img,
            16 * num_channel,
            use_spectral_norm=config.USE_SPECTRAL_NORMALIZATION,
            scope="head")
        x = ops.double_size(x)
        x = spade.spade_resblock(
            x,
            img,
            16 * num_channel,
            use_spectral_norm=config.USE_SPECTRAL_NORMALIZATION,
            scope="middle_0")
        x = spade.spade_resblock(
            x,
            img,
            16 * num_channel,
            use_spectral_norm=config.USE_SPECTRAL_NORMALIZATION,
            scope="middle_1")
        x = ops.double_size(x)
        x = spade.spade_resblock(
            x,
            img,
            8 * num_channel,
            use_spectral_norm=config.USE_SPECTRAL_NORMALIZATION,
            scope="up_0")
        x = ops.double_size(x)
        x = spade.spade_resblock(
            x,
            img,
            4 * num_channel,
            use_spectral_norm=config.USE_SPECTRAL_NORMALIZATION,
            scope="up_1")
        x = ops.double_size(x)
        x = spade.spade_resblock(
            x,
            img,
            2 * num_channel,
            use_spectral_norm=config.USE_SPECTRAL_NORMALIZATION,
            scope="up_2")
        x = ops.double_size(x)
        x = spade.spade_resblock(
            x,
            img,
            1 * num_channel,
            use_spectral_norm=config.USE_SPECTRAL_NORMALIZATION,
            scope="up_3")
        x = ops.leaky_relu(x, 0.2)
        # Pre-trained checkpoint uses default conv scoping.
        x = ops.sn_conv(x, out_channels, kernel_size=3)
        x = tf.tanh(x)
        return 0.5 * (x + 1)