Exemplo n.º 1
0
    def encoder(self, questions, questionLengths, projWords = False, 
        projQuestion = False, projDim = None):
        
        with tf.variable_scope("encoder"):
            # variational dropout option
            varDp = None
            if config.encVariationalDropout:
                varDp = {"stateDp": self.dropouts["stateInput"], 
                         "inputDp": self.dropouts["encInput"], 
                         "inputSize": config.wrdEmbDim}

            # rnns
            for i in range(config.encNumLayers):
                questionCntxWords, vecQuestions = ops.RNNLayer(questions, questionLengths, 
                    config.encDim, bi = config.encBi, cellType = config.encType, 
                    dropout = self.dropouts["encInput"], varDp = varDp, name = "rnn%d" % i)

            # dropout for the question vector
            vecQuestions = tf.nn.dropout(vecQuestions, self.dropouts["question"])
            
            # projection of encoder outputs 
            if projWords:
                questionCntxWords = ops.linear(questionCntxWords, config.encDim, projDim, 
                    name = "projCW")
            if projQuestion:
                vecQuestions = ops.linear(vecQuestions, config.encDim, projDim, 
                    act = config.encProjQAct, name = "projQ")

        return questionCntxWords, vecQuestions        
Exemplo n.º 2
0
    def control(self, controlInput, inWords, outWords, questionLengths,
        control, contControl = None, name = "", reuse = None):

        with tf.variable_scope("control" + name, reuse = reuse):
            dim = config.ctrlDim

            ## Step 1: compute "continuous" control state given previous control and question.
            # control inputs: question and previous control
            newContControl = controlInput
            if config.controlFeedPrev:
                newContControl = control if config.controlFeedPrevAtt else contControl
                if config.controlFeedInputs:
                    newContControl = tf.concat([newContControl, controlInput], axis = -1)
                    dim += config.ctrlDim

                # merge inputs together
                newContControl = ops.linear(newContControl, dim, config.ctrlDim,
                    act = config.controlContAct, name = "contControl")
                dim = config.ctrlDim

            ## Step 2: compute attention distribution over words and sum them up accordingly.
            # compute interactions with question words
            interactions = tf.expand_dims(newContControl, axis = 1) * inWords
            
            # optionally concatenate words
            if config.controlConcatWords:
                interactions = tf.concat([interactions, inWords], axis = -1)
                dim += config.ctrlDim                                              

            # optional projection
            if config.controlProj:
                interactions = ops.linear(interactions, dim, config.ctrlDim, 
                    act = config.controlProjAct) 
                dim = config.ctrlDim

            # compute attention distribution over words and summarize them accordingly 
            logits = ops.inter2logits(interactions, dim)
            # self.interL = (interW, interb)

            # if config.controlCoverage:
            #     logits += coverageBias * coverage

            attention = tf.nn.softmax(ops.expMask(logits, questionLengths))
            self.attentions["question"].append(attention)

            # if config.controlCoverage:
            #     coverage += attention # Add logits instead?               

            newControl = ops.att2Smry(attention, outWords) 
            
            # ablation: use continuous control (pre-attention) instead
            if config.controlContinuous:
                newControl = newContControl

        return newControl, newContControl
Exemplo n.º 3
0
    def zero_state(self, batchSize, dtype = tf.float32):
        ## initialize data-structures
        self.attentions = {"kb": [], "question": [], "self": [], "gate": []}
        self.autoEncLosses = {"control": tf.constant(0.0), "memory": tf.constant(0.0)}


        ## initialize state
        initialControl = self.initState("initCtrl", config.ctrlDim, config.initCtrl, batchSize)
        initialMemory = self.initState("initMem", config.memDim, config.initMem, batchSize)

        self.controls = tf.expand_dims(initialControl, axis = 1)
        self.memories = tf.expand_dims(initialMemory, axis = 1)
        self.infos = tf.expand_dims(initialMemory, axis = 1)
        
        self.contControl = initialControl
        # self.contControls = tf.expand_dims(initialControl, axis = 1)
        # self.postControls = tf.expand_dims(initialControl, axis = 1)


        ## initialize knowledge base
        # optionally merge question into knowledge base representation
        if config.initKBwithQ != "NON":
            iVecQuestions = ops.linear(self.vecQuestions, config.ctrlDim, config.memDim, name = "questions") 

            concatMul = (config.initKBwithQ == "MUL") 
            cnct, dim = ops.concat(self.knowledgeBase, iVecQuestions, config.memDim, mul = concatMul, expandY = True)
            self.knowledgeBase = ops.linear(cnct, dim, config.memDim, name = "initKB")


        ## initialize question words
        # choose question words to work with (original embeddings or encoder outputs)
        words = self.questionCntxWords if config.controlContextual else self.questionWords
        
        # optionally add parametric "null" word in the to all questions
        if config.addNullWord:
            words, questionLengths = self.addNullWord(words, questionLengths)

        # project words
        self.inWords = self.outWords = words
        if config.controlInWordsProj or config.controlOutWordsProj:
            pWords = ops.linear(words, config.ctrlDim, config.ctrlDim, name = "wordsProj") 
            self.inWords = pWords if config.controlInWordsProj else words
            self.outWords = pWords if config.controlOutWordsProj else words

        # if config.controlCoverage:
        #     self.coverage = tf.zeros((batchSize, tf.shape(words)[1]), dtype = tf.float32)
        #     self.coverageBias = tf.get_variable("coverageBias", shape = (),
        #         initializer = config.controlCoverageBias)  

        ## initialize memory variational dropout mask
        if config.memoryVariationalDropout:
            self.memDpMask = ops.generateVarDpMask((batchSize, config.memDim), self.dropouts["memory"])

        return MACCellTuple(initialControl, initialMemory)     
Exemplo n.º 4
0
    def memAutoEnc(newMemory, info, control, name = "", reuse = None):
        with tf.variable_scope("memAutoEnc" + name, reuse = reuse):
            # inputs to auto encoder
            features = info if config.autoEncMemInputs == "INFO" else newMemory
            features = ops.linear(features, config.memDim, config.ctrlDim, 
                act = config.autoEncMemAct, name = "aeMem")

            # reconstruct control
            if config.autoEncMemLoss == "CONT":
                loss = tf.reduce_mean(tf.squared_difference(control, features))
            else:                    
                interactions, dim = ops.mul(self.questionCntxWords, features, config.ctrlDim, 
                    concat = {"x": config.autoEncMemCnct}, mulBias = config.mulBias, name = "aeMem")
                
                logits = ops.inter2logits(interactions, dim)
                logits = self.expMask(logits, self.questionLengths)

                # reconstruct word attentions
                if config.autoEncMemLoss == "PROB":
                    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
                        labels = self.attentions["question"][-1], logits = logits))
                
                # reconstruct control through words attentions
                else:
                    attention = tf.nn.softmax(logits)
                    summary = ops.att2Smry(attention, self.questionCntxWords)
                    loss = tf.reduce_mean(tf.squared_difference(control, summary))
        
        return loss
Exemplo n.º 5
0
    def outputOp(self, memory, vecQuestions, images, imageInDim):
        with tf.variable_scope("outputUnit"):            
            features = memory
            dim = config.memDim

            if config.outQuestion:
                eVecQuestions = ops.linear(vecQuestions, config.ctrlDim, config.memDim, name = "outQuestion") 
                features, dim = ops.concat(features, eVecQuestions, config.memDim, mul = config.outQuestionMul)
            
            if config.outImage:
                images, imagesDim = ops.linearizeFeatures(images, self.H, self.W, self.imageInDim, 
                    outputDim = config.outImageDim)
                images = ops.linear(images, config.memDim, config.outImageDim, name = "outImage")
                features = tf.concat([features, images], axis = -1)
                dim += config.outImageDim

        return features, dim        
Exemplo n.º 6
0
    def __call__(self, inputs, state, scope = None):
        scope = scope or type(self).__name__
        with tf.variable_scope(scope, reuse = self.reuse): #  as tfscope
            control = state.control
            memory = state.memory

            # cell sharing
            inputName = "qInput"
            inputNameU = "qInputU"
            inputReuseU = inputReuse = (self.iteration > 0)
            if config.controlInputUnshared:
                inputNameU = "qInput%d" % self.iteration
                inputReuseU = None

            cellName = ""
            cellReuse = (self.iteration > 0)
            if config.unsharedCells:
                cellName = str(self.iteration)
                cellReuse = None 

            ## control unit
            # prepare question input to control 
            controlInput = ops.linear(self.vecQuestions, config.ctrlDim, config.ctrlDim, 
                name = inputName, reuse = inputReuse)

            controlInput = ops.activations[config.controlInputAct](controlInput)

            controlInput = ops.linear(controlInput, config.ctrlDim, config.ctrlDim, 
                name = inputNameU, reuse = inputReuseU)

            newControl, self.contControl = self.control(controlInput, self.inWords, self.outWords, 
                self.questionLengths, control, self.contControl, name = cellName, reuse = cellReuse)
            
            # read unit
            # ablation: use whole question as control
            if config.controlWholeQ:                    
                newControl = self.vecQuestions
                # ops.linear(self.vecQuestions, config.ctrlDim, projDim, name = "qMod") 

            info = self.read(self.knowledgeBase, memory, newControl, name = cellName, reuse = cellReuse) 

            if config.writeDropout < 1.0:
                # write unit
                info = tf.nn.dropout(info, self.dropouts["write"])
            
            newMemory = self.write(memory, info, newControl, self.contControl, name = cellName, reuse = cellReuse)

            # add auto encoder loss for memory
            # if config.autoEncMem:
            #     self.autoEncLosses["memory"] += memAutoEnc(newMemory, info, newControl)
        
            # append as standard list?
            self.controls = tf.concat([self.controls, tf.expand_dims(newControl, axis = 1)], axis = 1)
            self.memories = tf.concat([self.memories, tf.expand_dims(newMemory, axis = 1)], axis = 1)
            self.infos = tf.concat([self.infos, tf.expand_dims(info, axis = 1)], axis = 1)

            # self.contControls = tf.concat([self.contControls, tf.expand_dims(contControl, axis = 1)], axis = 1)
            # self.postControls = tf.concat([self.controls, tf.expand_dims(postControls, axis = 1)], axis = 1)

        newState = MACCellTuple(newControl, newMemory)
        return self.none, newState
Exemplo n.º 7
0
    def write(self, memory, info, control, contControl = None, name = "", reuse = None):
        with tf.variable_scope("write" + name, reuse = reuse):

            # optionally project info
            if config.writeInfoProj:
                info = ops.linear(info, config.memDim, config.memDim, name = "info")

            # optional info nonlinearity
            info = ops.activations[config.writeInfoAct](info) 

            # compute self-attention vector based on previous controls and memories
            if config.writeSelfAtt:
                selfControl = control
                if config.writeSelfAttMod == "CONT":
                    selfControl = contControl
                # elif config.writeSelfAttMod == "POST":
                #     selfControl = postControl
                selfControl = ops.linear(selfControl, config.ctrlDim, config.ctrlDim, name = "ctrlProj")
                
                interactions = self.controls * tf.expand_dims(selfControl, axis = 1)

                # if config.selfAttShareInter: 
                #     selfAttlogits = self.linearP(selfAttInter, config.encDim, 1, self.interL[0], self.interL[1], name = "modSelfAttInter")
                attention = ops.inter2att(interactions, config.ctrlDim, name = "selfAttention")
                self.attentions["self"].append(attention) 
                selfSmry = ops.att2Smry(attention, self.memories)

            # get write unit inputs: previous memory, the new info, optionally self-attention / control
            newMemory, dim = memory, config.memDim
            if config.writeInputs == "INFO":
                newMemory = info
            elif config.writeInputs == "SUM":
                newMemory += info
            elif config.writeInputs == "BOTH":
                newMemory, dim = ops.concat(newMemory, info, dim, mul = config.writeConcatMul)
            # else: MEM

            if config.writeSelfAtt:
                newMemory = tf.concat([newMemory, selfSmry], axis = -1)
                dim += config.memDim

            if config.writeMergeCtrl:
                newMemory = tf.concat([newMemory, control], axis = -1)
                dim += config.memDim                

            # project memory back to memory dimension
            if config.writeMemProj or (dim != config.memDim):
                newMemory = ops.linear(newMemory, dim, config.memDim, name = "newMemory")

            # optional memory nonlinearity
            newMemory = ops.activations[config.writeMemAct](newMemory)

            # write unit gate
            if config.writeGate:
                gateDim = config.memDim
                if config.writeGateShared:
                    gateDim = 1
                
                z = tf.sigmoid(ops.linear(control, config.ctrlDim, gateDim, name = "gate", bias = config.writeGateBias))
                
                self.attentions["gate"].append(z)

                newMemory = newMemory * z + memory * (1 - z)                

            # optional batch normalization
            if config.memoryBN:
                newMemory = tf.contrib.layers.batch_norm(newMemory, decay = config.bnDecay, 
                    center = config.bnCenter, scale = config.bnScale, 
                    is_training = self.train, updates_collections = None)

        return newMemory
Exemplo n.º 8
0
    def read(self, knowledgeBase, memory, control, name = "", reuse = None):
        with tf.variable_scope("read" + name, reuse = reuse):
            dim = config.memDim 

            ## memory dropout
            if config.memoryVariationalDropout:
                memory = ops.applyVarDpMask(memory, self.memDpMask, self.dropouts["memory"])
            else:
                memory = tf.nn.dropout(memory, self.dropouts["memory"])

            ## Step 1: knowledge base / memory interactions 
            # parameters for knowledge base and memory projection 
            proj = None
            if config.readProjInputs:
                proj = {"dim": config.attDim, "shared": config.readProjShared, "dropout": self.dropouts["read"] }
                dim = config.attDim

            # parameters for concatenating knowledge base elements
            concat = {"x": config.readMemConcatKB, "proj": config.readMemConcatProj}

            # compute interactions between knowledge base and memory
            interactions, interDim = ops.mul(x = knowledgeBase, y = memory, dim = config.memDim, 
                proj = proj, concat = concat, interMod = config.readMemAttType, name = "memInter")

            projectedKB = proj.get("x") if proj else None

            # project memory interactions back to hidden dimension
            if config.readMemProj:
                interactions = ops.linear(interactions, interDim, dim, act = config.readMemAct, 
                    name = "memKbProj")
            else: 
                dim = interDim

            ## Step 2: compute interactions with control
            if config.readCtrl:
                # compute interactions with control
                if config.ctrlDim != dim:
                    control = ops.linear(control, ctrlDim, dim, name = "ctrlProj")

                interactions, interDim = ops.mul(interactions, control, dim, 
                    interMod = config.readCtrlAttType, concat = {"x": config.readCtrlConcatInter}, 
                    name = "ctrlInter")

                # optionally concatenate knowledge base elements
                if config.readCtrlConcatKB:
                    if config.readCtrlConcatProj:
                        addedInp, addedDim = projectedKB, config.attDim
                    else:
                        addedInp, addedDim = knowledgeBase, config.memDim
                    interactions = tf.concat([interactions, addedInp], axis = -1)
                    dim += addedDim   

                # optional nonlinearity 
                interactions = ops.activations[config.readCtrlAct](interactions)

            ## Step 3: sum attentions up over the knowledge base
            # transform vectors to attention distribution
            attention,logits = ops.inter2att(interactions, dim, dropout = self.dropouts["read"],flag=True)

            self.attentions["kb"].append(attention)

            # optionally use projected knowledge base instead of original
            if config.readSmryKBProj:
                knowledgeBase = projectedKB
            
            # sum up the knowledge base according to the distribution
            information = ops.att2Smry(attention, knowledgeBase)

        return information