def check_analysis(self, name, start_date, end_date, symbols, v_cr, v_adr, v_sddr, v_sr, v_allocs):
     print name
     allocs, cr, adr, sddr, sr = optimize_portfolio(sd=start_date, ed=end_date, syms=symbols, gen_plot=False)
     np.testing.assert_almost_equal([v_cr, v_adr, v_sddr, v_sr], [cr, adr, sddr, sr], 5)
     np.testing.assert_almost_equal(v_allocs, allocs, 5)
     print allocs
     print sr
Exemplo n.º 2
0
    def _run_test(self, params, results):
        start_date = params['start_date']
        end_date = params['end_date']
        symbols = params['symbols']

        allocations, \
        cumulative_return, \
        average_daily_return, \
        volatility, \
        sharpe_ratio = optimization.optimize_portfolio(sd=start_date, ed=end_date, syms=symbols, gen_plot=False)

        self.assertAlmostEqual(np.sum(allocations), 1.0, delta=1e-8, msg="Allocations do not sum to 1.0")

        self.assertTrue(np.allclose(allocations, results['allocations']),
                        msg="Incorrect allocations {}, expected to be {}".format(allocations, results['allocations']))

        self.assertAlmostEqual(cumulative_return, results['cumulative_return'], delta=1e-5,
                               msg="Incorrect cumulative return {}, expected to be {}".format(
                                   cumulative_return, results['cumulative_return']))

        self.assertAlmostEqual(average_daily_return, results['average_daily_return'], delta=1e-5,
                               msg="Incorrect avg. daily return {}, expected to be {}".format(
                                   average_daily_return, results['average_daily_return']))

        self.assertAlmostEqual(volatility, results['volatility'], delta=1e-5,
                               msg="Incorrect volatility {}, expected to be {}".format(
                                   volatility, results['volatility']))

        self.assertAlmostEqual(sharpe_ratio, results['sharpe_ratio'], delta=1e-5,
                               msg="Incorrect sharpe ratio {}, expected to be {}".format(
                                   sharpe_ratio, results['sharpe_ratio']))
Exemplo n.º 3
0
 def check_analysis(self, name, start_date, end_date, symbols, v_cr, v_adr,
                    v_sddr, v_sr, v_allocs):
     print name
     allocs, cr, adr, sddr, sr = optimize_portfolio(sd=start_date,
                                                    ed=end_date,
                                                    syms=symbols,
                                                    gen_plot=False)
     np.testing.assert_almost_equal([v_cr, v_adr, v_sddr, v_sr],
                                    [cr, adr, sddr, sr], 5)
     np.testing.assert_almost_equal(v_allocs, allocs, 5)
     print allocs
     print sr
    def test_example1(self):
        start_date = dt.datetime(2010,01,01)
        end_date = dt.datetime(2010,12,31)
        symbols = ['GOOG', 'AAPL', 'GLD', 'XOM']

        start_val = 1000000
        risk_free_rate = 0.0
        sample_freq = 252.0

        # Assess the portfolio
        allocations, cr, adr, sddr, sr = o.optimize_portfolio(sd = start_date, 
                                                              ed = end_date, 
                                                              syms = symbols, 
                                                              gen_plot = False)        

        self.assertAlmostEqual(0.360090826885, cr, 3, "Cumulative Return {} is incorrect".format(cr), delta=None)
        self.assertAlmostEqual(2.00401501102, sr, 3, "Sharpe Ratio {} is incorrect".format(sr), delta=None)
        self.assertAlmostEqual(0.00127710312803, adr, 5, "Avg Daily Return {} is incorrect".format(adr), delta=None)
        self.assertAlmostEqual(0.0101163831312, sddr, 5,
                               "Volatility (stdev of daily returns) {} is incorrect".format(sddr), delta=None)
    def test_example4(self):
        start_date = dt.datetime(2005,12,01)
        end_date = dt.datetime(2006,05,31)
        symbols = ['YHOO', 'HPQ', 'GLD', 'HNZ']

        start_val = 1000000
        risk_free_rate = 0.0
        sample_freq = 252.0

        # Assess the portfolio
        allocations, cr, adr, sddr, sr = o.optimize_portfolio(sd = start_date, 
                                                              ed = end_date, 
                                                              syms = symbols, 
                                                              gen_plot = False)        

        self.assertAlmostEqual(0.229471589743, cr, 3, "Cumulative Return {} is incorrect".format(cr), delta=None)
        self.assertAlmostEqual(3.2334265871, sr, 3, "Sharpe Ratio {} is incorrect".format(sr), delta=None)
        self.assertAlmostEqual(0.00171589132005, adr, 5, "Avg Daily Return {} is incorrect".format(adr), delta=None)
        self.assertAlmostEqual(0.00842416845541, sddr, 5,
                               "Volatility (stdev of daily returns) {} is incorrect".format(sddr), delta=None)
    def test_example3(self):
        start_date = dt.datetime(2004,12,01)
        end_date = dt.datetime(2006,05,31)
        symbols = ['YHOO', 'XOM', 'GLD', 'HNZ']

        start_val = 1000000
        risk_free_rate = 0.0
        sample_freq = 252.0

        # Assess the portfolio
        allocations, cr, adr, sddr, sr = o.optimize_portfolio(sd = start_date, 
                                                              ed = end_date, 
                                                              syms = symbols, 
                                                              gen_plot = False)        

        self.assertAlmostEqual(0.315973959221, cr, 3, "Cumulative Return {} is incorrect".format(cr), delta=None)
        self.assertAlmostEqual(1.5178365773, sr, 3, "Sharpe Ratio {} is incorrect".format(sr), delta=None)
        self.assertAlmostEqual(0.000762170576913, adr, 5, "Avg Daily Return {} is incorrect".format(adr), delta=None)
        self.assertAlmostEqual(0.00797126844855, sddr, 5,
                               "Volatility (stdev of daily returns) {} is incorrect".format(sddr), delta=None)
    def test_example2(self):
        start_date = dt.datetime(2004,01,01)
        end_date = dt.datetime(2006,01,01)
        symbols = ['AXP', 'HPQ', 'IBM', 'HNZ']

        start_val = 1000000
        risk_free_rate = 0.0
        sample_freq = 252.0

        # Assess the portfolio
        allocations, cr, adr, sddr, sr = o.optimize_portfolio(sd = start_date, 
                                                              ed = end_date, 
                                                              syms = symbols, 
                                                              gen_plot = False)        

        self.assertAlmostEqual(0.255021425162, cr, 3, "Cumulative Return {} is incorrect".format(cr), delta=None)
        self.assertAlmostEqual(0.842697383626, sr, 3, "Sharpe Ratio {} is incorrect".format(sr), delta=None)
        self.assertAlmostEqual(0.000494944887734, adr, 5, "Avg Daily Return {} is incorrect".format(adr), delta=None)
        self.assertAlmostEqual(0.0093236393828, sddr, 5,
                               "Volatility (stdev of daily returns) {} is incorrect".format(sddr), delta=None)
    def test_example3(self):
        start_date = dt.datetime(2004, 12, 01)
        end_date = dt.datetime(2006, 05, 31)
        symbols = ['YHOO', 'XOM', 'GLD', 'HNZ']

        start_val = 1000000
        risk_free_rate = 0.0
        sample_freq = 252.0

        # Assess the portfolio
        allocations, cr, adr, sddr, sr = o.optimize_portfolio(sd=start_date,
                                                              ed=end_date,
                                                              syms=symbols,
                                                              gen_plot=False)

        self.assertAlmostEqual(0.315973959221,
                               cr,
                               3,
                               "Cumulative Return {} is incorrect".format(cr),
                               delta=None)
        self.assertAlmostEqual(1.5178365773,
                               sr,
                               3,
                               "Sharpe Ratio {} is incorrect".format(sr),
                               delta=None)
        self.assertAlmostEqual(0.000762170576913,
                               adr,
                               5,
                               "Avg Daily Return {} is incorrect".format(adr),
                               delta=None)
        self.assertAlmostEqual(
            0.00797126844855,
            sddr,
            5,
            "Volatility (stdev of daily returns) {} is incorrect".format(sddr),
            delta=None)
    def test_example1(self):
        start_date = dt.datetime(2010, 01, 01)
        end_date = dt.datetime(2010, 12, 31)
        symbols = ['GOOG', 'AAPL', 'GLD', 'XOM']

        start_val = 1000000
        risk_free_rate = 0.0
        sample_freq = 252.0

        # Assess the portfolio
        allocations, cr, adr, sddr, sr = o.optimize_portfolio(sd=start_date,
                                                              ed=end_date,
                                                              syms=symbols,
                                                              gen_plot=False)

        self.assertAlmostEqual(0.360090826885,
                               cr,
                               3,
                               "Cumulative Return {} is incorrect".format(cr),
                               delta=None)
        self.assertAlmostEqual(2.00401501102,
                               sr,
                               3,
                               "Sharpe Ratio {} is incorrect".format(sr),
                               delta=None)
        self.assertAlmostEqual(0.00127710312803,
                               adr,
                               5,
                               "Avg Daily Return {} is incorrect".format(adr),
                               delta=None)
        self.assertAlmostEqual(
            0.0101163831312,
            sddr,
            5,
            "Volatility (stdev of daily returns) {} is incorrect".format(sddr),
            delta=None)
    def test_example2(self):
        start_date = dt.datetime(2004, 01, 01)
        end_date = dt.datetime(2006, 01, 01)
        symbols = ['AXP', 'HPQ', 'IBM', 'HNZ']

        start_val = 1000000
        risk_free_rate = 0.0
        sample_freq = 252.0

        # Assess the portfolio
        allocations, cr, adr, sddr, sr = o.optimize_portfolio(sd=start_date,
                                                              ed=end_date,
                                                              syms=symbols,
                                                              gen_plot=False)

        self.assertAlmostEqual(0.255021425162,
                               cr,
                               3,
                               "Cumulative Return {} is incorrect".format(cr),
                               delta=None)
        self.assertAlmostEqual(0.842697383626,
                               sr,
                               3,
                               "Sharpe Ratio {} is incorrect".format(sr),
                               delta=None)
        self.assertAlmostEqual(0.000494944887734,
                               adr,
                               5,
                               "Avg Daily Return {} is incorrect".format(adr),
                               delta=None)
        self.assertAlmostEqual(
            0.0093236393828,
            sddr,
            5,
            "Volatility (stdev of daily returns) {} is incorrect".format(sddr),
            delta=None)
    def test_example4(self):
        start_date = dt.datetime(2005, 12, 01)
        end_date = dt.datetime(2006, 05, 31)
        symbols = ['YHOO', 'HPQ', 'GLD', 'HNZ']

        start_val = 1000000
        risk_free_rate = 0.0
        sample_freq = 252.0

        # Assess the portfolio
        allocations, cr, adr, sddr, sr = o.optimize_portfolio(sd=start_date,
                                                              ed=end_date,
                                                              syms=symbols,
                                                              gen_plot=False)

        self.assertAlmostEqual(0.229471589743,
                               cr,
                               3,
                               "Cumulative Return {} is incorrect".format(cr),
                               delta=None)
        self.assertAlmostEqual(3.2334265871,
                               sr,
                               3,
                               "Sharpe Ratio {} is incorrect".format(sr),
                               delta=None)
        self.assertAlmostEqual(0.00171589132005,
                               adr,
                               5,
                               "Avg Daily Return {} is incorrect".format(adr),
                               delta=None)
        self.assertAlmostEqual(
            0.00842416845541,
            sddr,
            5,
            "Volatility (stdev of daily returns) {} is incorrect".format(sddr),
            delta=None)
Exemplo n.º 12
0
        sma_bb_ratio = np.array(
            OSEBX.get_sma_bb_ratios(promising_stocks)
        )  #np.concatenate((OSEBX.get_sma_bb_ratios(requested_stocks), np.zeros((1,6))[0]))#

        # Get historic stock covariances
        cov_matrix = OSEBX.get_stock_covariances(returns)

        #		filter = OSEBX.filter(requested_stocks, [stock for stock, prob in promising_stocks])

        # Generate optimization problem
        P, q, G, h, A, b, means, stds = opt.generate_ProblemMatrices(
            returns, cov_matrix, sma_bb_ratio, rho, phi, kappa)

        # Solve optimization problem
        optimized_portfolio = opt.optimize_portfolio(OSEBX, promising_stocks,
                                                     P, q, G, h, A, b, means,
                                                     stds, sma_bb_ratio, mu)

        stock_algorithms.trade(OSEBX, my_portfolio, optimized_portfolio,
                               'historic', run_no)
        #
        OSEBX.fetch_benchmark(run_no)
        #
        if run_no == 10 or run_no == 20 or run_no == 30 or run_no == 40:
            plot(my_portfolio.earnings, OSEBX.benchmark, run_no)
#
#
        run_no += 1
        #
        OSEBX.fetch_stock_data(requested_stocks, run_no, 'historic', N)
        #
Exemplo n.º 13
0
    def _run_test(self, params, results):

        # the margins below are taken from grade_optimization.py
        abs_margins = dict(
            sum_to_one=0.02,
            alloc_range=0.02,
            alloc_match=0.1,
            sddr_match=0.05)  # absolute margin of error for each component

        start_date = params['start_date']
        end_date = params['end_date']
        symbols = params['symbols']

        start_time = time()

        allocations, \
        cumulative_return, \
        average_daily_return, \
        volatility, \
        sharpe_ratio = optimization.optimize_portfolio(sd=start_date, ed=end_date, syms=symbols, gen_plot=False)

        end_time = time()
        function_runtime = end_time - start_time

        # check runtime < 5 seconds
        # =======================================
        self.assertLessEqual(
            function_runtime,
            5,
            msg="Runtime violation, expected < 5.0s, runtime was {:1.3f} s".
            format(end_time - start_time))

        # check volatility
        # =======================================
        self.assertLessEqual(
            (volatility / results['volatility']) - 1,
            abs_margins['sddr_match'],
            msg="Sddr too large: {:1.6f} (expected < {:1.6f} + {:1.6f})".
            format(volatility, results['volatility'],
                   results['volatility'] * abs_margins['sddr_match']))

        # check that sddr is not significantly less than expected, this would be the case if the student answers are
        # wrong or you are calculating sddr incorrectly. OR you found a global minimum below what other students have
        # =======================================
        # Note I was able to slightly beat the grade_optimization.py volatility slightly using a nifty trick so I
        # created results "min_student_volatility" as well to capture this.  The testcase below will error if you beat
        # either the latest students volatility, if provided, or the benchmark volatility if there it is not a testcase
        # from the grade_optimization.py
        test_volatility = results['volatility']
        if 'min_student_volatility' in results:
            test_volatility = results['min_student_volatility']
        self.assertGreaterEqual(
            volatility +
            1e-8,  # add small delta to account for floating point errors
            test_volatility,
            msg=
            "WARNING: your Volatility {} is less than the expected minimum {}, Verify your code and notify your classmates on Reddit"
            .format(volatility, test_volatility))

        # check allocation sum is ~1.0
        # =======================================
        self.assertLessEqual(
            abs(sum(allocations) - 1),
            abs_margins['sum_to_one'],
            msg="sum of allocations: {:1.5f} (expected: 1.0)".format(
                sum(allocations)))

        # check allocations are within tolerance
        # =======================================
        # This loops through each symbol and errors if the allocation is out range
        for symbol, alloc in zip(symbols, allocations):
            self.assertLessEqual(
                alloc,
                1 + abs_margins['alloc_range'],
                msg="{} - allocation out of range: {:1.5f} (expected [0.0, 1.0)"
                .format(symbol, alloc))
            self.assertGreaterEqual(
                alloc,
                -1 * abs_margins['alloc_range'],
                msg="{} - allocation out of range: {:1.5f} (expected [0.0, 1.0)"
                .format(symbol, alloc))
def t_generator(*args, **kwargs):
    def t(self):
        self.assertAlmostEqual(*args, **kwargs)
    return t

def range_generator(value):
    def t(self):
        self.assertGreaterEqual(value, -0.02)
        self.assertLessEqual(value, 1.02)
    return t

for name, test in tests.iteritems():
    allocations, cr, adr, sddr, sr = opt.optimize_portfolio(
        sd = test['args']['start_date'],
        ed = test['args']['end_date'],
        syms = test['args']['symbols'],
        gen_plot = False,
    )

    t = t_generator(cr, test['results']['cumulative_return'], places=4)
    setattr(TestMCP2, "test_{0}_cumulative_return".format(name), t)

    t = t_generator(adr, test['results']['adr'], places=4)
    setattr(TestMCP2, "test_{0}_adr".format(name), t)

    t = t_generator(sddr, test['results']['volatility'], places=4)
    setattr(TestMCP2, "test_{0}_volatility".format(name), t)

    t = t_generator(sr, test['results']['sharpe'], places=4)
    setattr(TestMCP2, "test_{0}_sharpe_ratio".format(name), t)
Exemplo n.º 15
0
def portfolio_page():
    if request.method=='GET':
        return render_template('portfolio.html')
    else:
        app_quantfy.vars={} # This is a dictionary
        # Define the variables. This is a local variable, but in Flask it will be passed to the plot route I guess
        
        app_quantfy.vars['sym'] = request.form['sym'].upper().strip(';').split(';') # 'sym' should be defined in html file as name
        
        if (app_quantfy.vars['sym'][0]=='') :  # sym is a list delimited by ;
            return render_template('portfolio.html',error_sym='<font size="3" color="red" > Provide at least one ticker symbol </font>') 
        
        
        if len(request.form['start_date'])!=0: # Here start and end date are keys are coming even if they are empty
            try:
                app_quantfy.vars['start_date']=dt.datetime.strptime(request.form['start_date'],'%m/%d/%Y')
            except ValueError:
                return render_template('portfolio.html',error_start_date='<font size="3" color="red" > Wrong date format </font>')
        else:
            # Take 1 years ago of the current date
            app_quantfy.vars['start_date']=dt.datetime.today()-dt.timedelta(days=365) # This does not give the accurate 5 years
        
        
        if  len(request.form['end_date'])!=0:
            try:
                app_quantfy.vars['end_date']=dt.datetime.strptime(request.form['end_date'],'%m/%d/%Y')
            except ValueError:
                return render_template('portfolio.html',error_end_date='<font size="3" color="red" > Wrong date format </font>')
        else:
            # Take today as the default date
            app_quantfy.vars['end_date']=dt.datetime.today()
        
        #print app_quantfy.vars
        if 'bench_sym' in request.form: 
            app_quantfy.vars['bench_sym']=request.form['bench_sym']
        else:
            app_quantfy.vars['bench_sym']='SPY'
        
        symbols=list(app_quantfy.vars['sym']); # Create a new list as we are doing insert operation next
        symbols.insert(0,app_quantfy.vars['bench_sym']); # Insert the default symbol in the symbols list
        
        # Here just get the data for the 'Adj. Close'
        full_data=[(sym, apicall_data.get_data_from_quandl(symbol=sym, features=['Adj. Close'], start_dt=app_quantfy.vars['start_date'],end_dt=app_quantfy.vars['end_date'])
                        ) for sym in symbols]
        
        # Convert this to required format
        
        df_all_sym=util.get_data(full_data)
        
        app_quantfy.vars['guess_alloc']=request.form['guess_alloc'].strip(';').split(';')
        
        
        
        app_quantfy.vars['start_value']=float(request.form['start_value']); # It has a default value
        
        if len(app_quantfy.vars['guess_alloc']) !=0 and (app_quantfy.vars['guess_alloc'][0]!='') : # app_quantfy.vars['guess_alloc'] is a list because of the strip function
            # print app_quantfy.vars['guess_alloc']
            # print len(app_quantfy.vars['guess_alloc'])
            app_quantfy.vars['guess_alloc']=[float(i) for i in app_quantfy.vars['guess_alloc']]
            try:
                assert len(app_quantfy.vars['guess_alloc'])==len(app_quantfy.vars['sym'])
            except AssertionError:
                return render_template('portfolio.html',error_alloc='<font size="3" color="red" > Number of allocations should be same as symbols   </font>')
            # Sum should be equal to one
            print app_quantfy.vars['guess_alloc']
            
            try:
                assert abs(sum(app_quantfy.vars['guess_alloc'])-1.0)<=1e-5 # Sometimes the rounding does not work correctly
            except AssertionError:
                return render_template('portfolio.html',error_alloc='<font size="3" color="red" > Sum should be 1   </font>')

            
        else:
            # Generate random numbers
            allocs=np.random.random(len(app_quantfy.vars['sym']))
            allocs /=allocs.sum()
            app_quantfy.vars['guess_alloc']=allocs
            #print allocs
        
        cr,adr,sddr,sr,ev,normalized_plot_df=optimization.access_portfolio(df_all_sym, app_quantfy.vars['bench_sym'], 
                                                                           app_quantfy.vars['guess_alloc'],
                                                                           sv=app_quantfy.vars['start_value'])
        
        #print cr,adr,sddr,sr,ev
        
        param_not_opt=pd.DataFrame([cr,adr,sddr,sr,ev],index=['Cumulative Return','Average Daily Return','Stand. Deviation Daily return',
                                                          'Sharpe Ratio','End value'], columns=['Unoptimized'])
        
        script_not_opt_table,div_not_opt_table=convert_pd_bokeh_html(param_not_opt)
        
        # print normalized_plot_df.head()
        hover=HoverTool(
            tooltips=[
                ("Portfolio",'$y')
                
                
            ]
        )
        TOOLS='pan,wheel_zoom,box_zoom,reset,save,box_select,crosshair'
        not_opt_p = figure(width=900, height=500, x_axis_type="datetime",tools=[TOOLS,hover])
        
        colors=['blue','red','green','#cc3300']
        
        for (i,ftr) in enumerate(normalized_plot_df):
            not_opt_p.line(normalized_plot_df.index,normalized_plot_df[ftr],legend=ftr,color=colors[i],line_width=2)
        
        #not_opt_p.line(normalized_plot_df)
        
        not_opt_p.title.text = "Un-optimized portfolio"
        not_opt_p.legend.location = "top_left"
        not_opt_p.xaxis.axis_label = 'Date'
        not_opt_p.yaxis.axis_label = 'Relative portfolio value'
        
        tab_not_opt=Panel(child=not_opt_p,title='Un-optimized portfolio')
        
        # script_not_opt, div_not_opt=components(not_opt_p)
        
        # print script_not_opt,div_not_opt
        # Now run optimized
        
        cr,adr,sddr,sr,ev,normalized_plot_df,optimal_alloc=optimization.optimize_portfolio(df_all_sym,app_quantfy.vars['bench_sym'],
                                                                             app_quantfy.vars['start_value'])
        
        
        # print cr,adr,sddr,sr,ev,optimal_alloc
        
        # print normalized_plot_df.head()
        hover=HoverTool(
            tooltips=[
                ("Portfolio",'$y')
                
                
            ]
        )
        
        opt_p = figure(width=900, height=500, x_axis_type="datetime",tools=[TOOLS,hover])
              
        for (i,ftr) in enumerate(normalized_plot_df):
            opt_p.line(normalized_plot_df.index,normalized_plot_df[ftr],legend=ftr,color=colors[i],line_width=2)
        
        
        # print normalized_plot_df
        opt_p.title.text = "Optimized portfolio value"
        opt_p.legend.location = "top_left"
        opt_p.xaxis.axis_label = 'Date'
        opt_p.yaxis.axis_label = 'Relative portfolio value'
        
        tab_opt=Panel(child=opt_p,title='Optimized portfolio')
        
        tabs=Tabs(tabs=[tab_not_opt,tab_opt])
        
        script_opt, div_opt=components(tabs)
        
        
        param_opt=pd.DataFrame([cr,adr,sddr,sr,ev],index=['Cummulative Return','Additive Daily Return','Stand. Deviation Daily return',
                                                          'Sharpe Ratio','End value'], columns=['Optimized'])
        
        all_params=param_not_opt.join(param_opt)
        
        script_opt_table,div_opt_table=convert_pd_bokeh_html(all_params)
        
        
              
        alloc_df=pd.DataFrame([app_quantfy.vars['guess_alloc'],list(optimal_alloc)],index=['Random/Guess allocations','Optimized allocations'],columns=app_quantfy.vars['sym'])
        
        #str_opt_alloc='Optimal allocations: '+', '.join([str(i) for i in optimal_alloc])
        script_alloc_df,div_alloc_df=convert_pd_bokeh_html(alloc_df)
        
        # script_not_opt_table=script_not_opt_table,div_not_opt_table=div_not_opt_table,
        return render_template('portfolio.html',script_opt_table=script_opt_table, div_opt_table=div_opt_table,
                               script_alloc_df=script_alloc_df,div_alloc_df=div_alloc_df,
                                script_opt=script_opt,plot_opt=div_opt
                               )
Exemplo n.º 16
0
    return t


def range_generator(value):
    def t(self):
        self.assertGreaterEqual(value, -0.02)
        self.assertLessEqual(value, 1.02)

    return t


for name, test in tests.iteritems():
    allocations, cr, adr, sddr, sr = opt.optimize_portfolio(
        sd=test['args']['start_date'],
        ed=test['args']['end_date'],
        syms=test['args']['symbols'],
        gen_plot=False,
    )

    t = t_generator(cr, test['results']['cumulative_return'], places=4)
    setattr(TestMCP2, "test_{0}_cumulative_return".format(name), t)

    t = t_generator(adr, test['results']['adr'], places=4)
    setattr(TestMCP2, "test_{0}_adr".format(name), t)

    t = t_generator(sddr, test['results']['volatility'], places=4)
    setattr(TestMCP2, "test_{0}_volatility".format(name), t)

    t = t_generator(sr, test['results']['sharpe'], places=4)
    setattr(TestMCP2, "test_{0}_sharpe_ratio".format(name), t)