def main(): parser = opts.get_parser() args = parser.parse_args() params = read_params(args) out_dir = make_and_fill_output_dir(args, params) load_unspecified_params(params) # Initialize model and move it to gpu torch.cuda.set_device(args.gpu) model = gen_model(params, args) print(model) model.cuda(args.gpu) # Load the datasets and setup optimizer datasets, dataset_stats = load_data(args.data) optimizer = setup_optimizer(model, params) if args.eval: dev_epoch(model=model, data_iter=datasets["dev"].get_batched_iter( params["batch_size"]), desc="Evaluation:", data_iter_len=dataset_stats["dev"]["words"] // params["batch_size"]) else: n_epochs = int(args.n_epochs) for i in range(1, n_epochs + 1): run_epoch(model=model, optimizer=optimizer, datasets=datasets, dataset_stats=dataset_stats, out_dir=out_dir, batch_size=params["batch_size"], bptt_len=params["bptt_len"], epoch_num=i)
def main(): parser = opts.get_parser() args = parser.parse_args() params = read_params(args) make_and_fill_output_dir(args, params) load_unspecified_params(params) # Initialize model and move it to gpu torch.cuda.set_device(args.gpu) model = gen_model(params, args.resume_from) model.cuda(args.gpu) model.init_params() # Load the datasets and setup optimizer datasets, dataset_stats = load_data(args.data) optimizer = setup_optimizer(model) n_epochs = int(args.n_epochs) for i in range(1, n_epochs + 1): run_epoch(model=model, optimizer=optimizer, datasets=datasets, dataset_stats=dataset_stats, batch_size=params["batch_size"], bptt_len=params["bptt_len"], epoch_num=i)
def main(): parser = opts.get_parser() args = parser.parse_args() params = read_params(args) make_and_fill_output_dir(args, params) load_unspecified_params(params) # Initialize model and move it to gpu model = gen_model(params, args.resume_from) model_to_gpu(model, args.gpu) # Load the datasets and setup optimizer datasets, dataset_stats = load_data(args.data) optimizer = setup_optimizer(model) n_epochs = int(args.n_epochs) for i in range(1, n_epochs + 1): run_epoch(model=model, optimizer=optimizer, datasets=datasets, dataset_stats=dataset_stats, batch_size=params["batch_size"], bptt_len=params["bptt_len"], epoch_num=i) save_model(path.join(args.out, "snapshot_{0}".format(i)), model)
def main(): parser = get_parser() p = parser.parse_args() if p.config is not None: with open(p.config, 'r') as f: default_arg = yaml.load(f) key = vars(p).keys() for k in default_arg.keys(): if k not in key: print('Wrong Arg: {}'.format(k)) assert (k in key) parser.set_defaults(**default_arg) args = parser.parse_args() processor = Processor(args) processor.start()
def main(opts): """docstring for main""" if opts.mode == "colab_tpu": strategy = start_tpu() t = trainer(opts, strategy) t.train() elif opts.mode == "gpu": opts.shuffle_buffer = 64 opts.val_batch_size = 32 opts.train_batch_size = 32 strategy = tf.distribute.get_strategy() t = trainer(opts, strategy) t.train() elif opts.mode == "debug": opts.shuffle_buffer = None opts.val_batch_size = 1 opts.train_batch_size = 1 strategy = tf.distribute.get_strategy() t = trainer(opts, strategy) t.train() if __name__ == "__main__": opts = get_parser() num_data = opts.tfrecord_path.split('/')[-1].split('.')[0].split('_')[-1] opts.num_data = int(num_data) opts.weight_path = opts.weight_path + opts.exp_name main(opts)