Exemplo n.º 1
0
    def __init__(
        self,
        study_name: str,
        storage: Union[str, storages.BaseStorage],
        sampler: Optional["samplers.BaseSampler"] = None,
        pruner: Optional[pruners.BasePruner] = None,
    ) -> None:

        self.study_name = study_name
        storage = storages.get_storage(storage)
        study_id = storage.get_study_id_from_name(study_name)
        super(Study, self).__init__(study_id, storage)

        self.sampler = sampler or samplers.TPESampler()
        self.pruner = pruner or pruners.MedianPruner()

        self._optimize_lock = threading.Lock()
        self._stop_flag = False
Exemplo n.º 2
0
    def __init__(
            self,
            study_name,  # type: str
            storage,  # type: Union[str, storages.BaseStorage]
            sampler=None,  # type: samplers.BaseSampler
            pruner=None  # type: pruners.BasePruner
    ):
        # type: (...) -> None

        self.study_name = study_name
        storage = storages.get_storage(storage)
        study_id = storage.get_study_id_from_name(study_name)
        super(Study, self).__init__(study_id, storage)

        self.sampler = sampler or samplers.TPESampler()
        self.pruner = pruner or pruners.MedianPruner()

        self._optimize_lock = threading.Lock()
Exemplo n.º 3
0
def test_suggest_low_equals_high(storage_init_func):
    # type: (typing.Callable[[], storages.BaseStorage]) -> None

    study = create_study(storage_init_func(), sampler=samplers.TPESampler(n_startup_trials=0))
    trial = Trial(study, study.storage.create_new_trial_id(study.study_id))

    # Parameter values are determined without suggestion when low == high.
    with patch.object(trial, '_suggest', wraps=trial._suggest) as mock_object:
        assert trial.suggest_uniform('a', 1., 1.) == 1.  # Suggesting a param.
        assert trial.suggest_uniform('a', 1., 1.) == 1.  # Suggesting the same param.
        assert mock_object.call_count == 0
        assert trial.suggest_loguniform('b', 1., 1.) == 1.  # Suggesting a param.
        assert trial.suggest_loguniform('b', 1., 1.) == 1.  # Suggesting the same param.
        assert mock_object.call_count == 0
        assert trial.suggest_discrete_uniform('c', 1., 1., 1.) == 1.  # Suggesting a param.
        assert trial.suggest_discrete_uniform('c', 1., 1., 1.) == 1.  # Suggesting the same param.
        assert mock_object.call_count == 0
        assert trial.suggest_int('d', 1, 1) == 1  # Suggesting a param.
        assert trial.suggest_int('d', 1, 1) == 1  # Suggesting the same param.
        assert mock_object.call_count == 0
Exemplo n.º 4
0
def test_suggest_low_equals_high(storage_init_func):
    # type: (typing.Callable[[], storages.BaseStorage]) -> None

    study = create_study(storage_init_func(),
                         sampler=samplers.TPESampler(n_startup_trials=0))
    trial = Trial(study, study._storage.create_new_trial(study._study_id))

    # Parameter values are determined without suggestion when low == high.
    with patch.object(trial, "_suggest", wraps=trial._suggest) as mock_object:
        assert trial.suggest_uniform("a", 1.0,
                                     1.0) == 1.0  # Suggesting a param.
        assert trial.suggest_uniform("a", 1.0,
                                     1.0) == 1.0  # Suggesting the same param.
        assert mock_object.call_count == 0
        assert trial.suggest_loguniform("b", 1.0,
                                        1.0) == 1.0  # Suggesting a param.
        assert trial.suggest_loguniform(
            "b", 1.0, 1.0) == 1.0  # Suggesting the same param.
        assert mock_object.call_count == 0
        assert trial.suggest_discrete_uniform(
            "c", 1.0, 1.0, 1.0) == 1.0  # Suggesting a param.
        assert (trial.suggest_discrete_uniform("c", 1.0, 1.0, 1.0) == 1.0
                )  # Suggesting the same param.
        assert mock_object.call_count == 0
        assert trial.suggest_int("d", 1, 1) == 1  # Suggesting a param.
        assert trial.suggest_int("d", 1, 1) == 1  # Suggesting the same param.
        assert mock_object.call_count == 0
        assert trial.suggest_float("e", 1.0, 1.0) == 1.0  # Suggesting a param.
        assert trial.suggest_float("e", 1.0,
                                   1.0) == 1.0  # Suggesting the same param.
        assert mock_object.call_count == 0
        assert trial.suggest_float("f", 0.5, 0.5,
                                   log=True) == 0.5  # Suggesting a param.
        assert trial.suggest_float(
            "f", 0.5, 0.5, log=True) == 0.5  # Suggesting the same param.
        assert mock_object.call_count == 0
        assert trial.suggest_float("g", 0.5, 0.5,
                                   log=False) == 0.5  # Suggesting a param.
        assert trial.suggest_float(
            "g", 0.5, 0.5, log=False) == 0.5  # Suggesting the same param.
        assert mock_object.call_count == 0
Exemplo n.º 5
0
    def __init__(
            self,
            study_name,  # type: str
            storage,  # type: Union[str, storages.BaseStorage]
            sampler=None,  # type: samplers.BaseSampler
            pruner=None,  # type: pruners.BasePruner
            force_garbage_collection=True,  # type: bool
    ):
        # type: (...) -> None

        self.study_name = study_name
        storage = storages.get_storage(storage)
        study_id = storage.get_study_id_from_name(study_name)
        super(Study, self).__init__(study_id, storage)

        self.sampler = sampler or samplers.TPESampler()
        self.pruner = pruner or pruners.MedianPruner()

        self.logger = logging.get_logger(__name__)

        self._optimize_lock = threading.Lock()
        self.force_garbage_collection = force_garbage_collection
Exemplo n.º 6
0
    def _make_study(self, is_higher_better: bool) -> study_module.Study:
        direction = "maximize" if is_higher_better else "minimize"

        if self.study is None:
            seed = self._get_random_state()
            sampler = samplers.TPESampler(seed=seed)

            return study_module.create_study(
                direction=direction, sampler=sampler
            )

        _direction = (
            study_module.StudyDirection.MAXIMIZE
            if is_higher_better
            else study_module.StudyDirection.MINIMIZE
        )

        if self.study.direction != _direction:
            raise ValueError(
                "direction of study must be '{}'.".format(direction)
            )

        return self.study
Exemplo n.º 7
0
    def fit(
            self,
            X,  # type: TwoDimArrayLikeType
            y=None,  # type: Optional[Union[OneDimArrayLikeType, TwoDimArrayLikeType]]
            groups=None,  # type: Optional[OneDimArrayLikeType]
            **fit_params  # type: Any
    ):
        # type: (...) -> 'OptunaSearchCV'
        """Run fit with all sets of parameters.

        Args:
            X:
                Training data.

            y:
                Target variable.

            groups:
                Group labels for the samples used while splitting the dataset
                into train/test set.

            **fit_params:
                Parameters passed to ``fit`` on the estimator.

        Returns:
            self:
                Return self.
        """

        self._check_params()

        random_state = check_random_state(self.random_state)
        max_samples = self.subsample
        n_samples = _num_samples(X)
        old_level = _logger.getEffectiveLevel()

        if self.verbose > 1:
            _logger.setLevel(DEBUG)
        elif self.verbose > 0:
            _logger.setLevel(INFO)
        else:
            _logger.setLevel(WARNING)

        self.sample_indices_ = np.arange(n_samples)

        if type(max_samples) is float:
            max_samples = int(max_samples * n_samples)

        if max_samples < n_samples:
            self.sample_indices_ = random_state.choice(self.sample_indices_,
                                                       max_samples,
                                                       replace=False)

            self.sample_indices_.sort()

        X_res = _safe_indexing(X, self.sample_indices_)
        y_res = _safe_indexing(y, self.sample_indices_)
        groups_res = _safe_indexing(groups, self.sample_indices_)
        fit_params_res = fit_params

        if fit_params_res is not None:
            fit_params_res = _check_fit_params(X, fit_params,
                                               self.sample_indices_)

        classifier = is_classifier(self.estimator)
        cv = check_cv(self.cv, y_res, classifier)

        self.n_splits_ = cv.get_n_splits(X_res, y_res, groups=groups_res)
        self.scorer_ = check_scoring(self.estimator, scoring=self.scoring)

        if self.study is None:
            seed = random_state.randint(0, np.iinfo("int32").max)
            sampler = samplers.TPESampler(seed=seed)

            self.study_ = study_module.create_study(direction="maximize",
                                                    sampler=sampler)

        else:
            self.study_ = self.study

        objective = _Objective(
            self.estimator,
            self.param_distributions,
            X_res,
            y_res,
            cv,
            self.enable_pruning,
            self.error_score,
            fit_params_res,
            groups_res,
            self.max_iter,
            self.return_train_score,
            self.scorer_,
        )

        _logger.info("Searching the best hyperparameters using {} "
                     "samples...".format(_num_samples(self.sample_indices_)))

        self.study_.optimize(objective,
                             n_jobs=self.n_jobs,
                             n_trials=self.n_trials,
                             timeout=self.timeout)

        _logger.info("Finished hyperparemeter search!")

        if self.refit:
            self._refit(X, y, **fit_params)

        _logger.setLevel(old_level)

        return self
Exemplo n.º 8
0
def test_suggest_low_equals_high(storage_mode: str) -> None:

    with patch.object(
            distributions,
            "_get_single_value",
            wraps=distributions._get_single_value
    ) as mock_object, StorageSupplier(storage_mode) as storage:

        study = create_study(storage=storage,
                             sampler=samplers.TPESampler(n_startup_trials=0))

        trial = Trial(study, study._storage.create_new_trial(study._study_id))

        assert trial.suggest_uniform("a", 1.0,
                                     1.0) == 1.0  # Suggesting a param.
        assert mock_object.call_count == 1
        assert trial.suggest_uniform("a", 1.0,
                                     1.0) == 1.0  # Suggesting the same param.
        assert mock_object.call_count == 1

        assert trial.suggest_loguniform("b", 1.0,
                                        1.0) == 1.0  # Suggesting a param.
        assert mock_object.call_count == 2
        assert trial.suggest_loguniform(
            "b", 1.0, 1.0) == 1.0  # Suggesting the same param.
        assert mock_object.call_count == 2

        assert trial.suggest_discrete_uniform(
            "c", 1.0, 1.0, 1.0) == 1.0  # Suggesting a param.
        assert mock_object.call_count == 3
        assert (trial.suggest_discrete_uniform("c", 1.0, 1.0, 1.0) == 1.0
                )  # Suggesting the same param.
        assert mock_object.call_count == 3

        assert trial.suggest_int("d", 1, 1) == 1  # Suggesting a param.
        assert mock_object.call_count == 4
        assert trial.suggest_int("d", 1, 1) == 1  # Suggesting the same param.
        assert mock_object.call_count == 4

        assert trial.suggest_float("e", 1.0, 1.0) == 1.0  # Suggesting a param.
        assert mock_object.call_count == 5
        assert trial.suggest_float("e", 1.0,
                                   1.0) == 1.0  # Suggesting the same param.
        assert mock_object.call_count == 5

        assert trial.suggest_float("f", 0.5, 0.5,
                                   log=True) == 0.5  # Suggesting a param.
        assert mock_object.call_count == 6
        assert trial.suggest_float(
            "f", 0.5, 0.5, log=True) == 0.5  # Suggesting the same param.
        assert mock_object.call_count == 6

        assert trial.suggest_float("g", 0.5, 0.5,
                                   log=False) == 0.5  # Suggesting a param.
        assert mock_object.call_count == 7
        assert trial.suggest_float(
            "g", 0.5, 0.5, log=False) == 0.5  # Suggesting the same param.
        assert mock_object.call_count == 7

        assert trial.suggest_float("h", 0.5, 0.5,
                                   step=1.0) == 0.5  # Suggesting a param.
        assert mock_object.call_count == 8
        assert trial.suggest_float(
            "h", 0.5, 0.5, step=1.0) == 0.5  # Suggesting the same param.
        assert mock_object.call_count == 8

        assert trial.suggest_int("i", 1, 1,
                                 log=True) == 1  # Suggesting a param.
        assert mock_object.call_count == 9
        assert trial.suggest_int("i", 1, 1,
                                 log=True) == 1  # Suggesting the same param.
        assert mock_object.call_count == 9
Exemplo n.º 9
0
def test_suggest_low_equals_high(storage_init_func):
    # type: (Callable[[], storages.BaseStorage]) -> None

    study = create_study(storage_init_func(),
                         sampler=samplers.TPESampler(n_startup_trials=0))
    trial = Trial(study, study._storage.create_new_trial(study._study_id))

    with patch.object(
            optuna.distributions,
            "_get_single_value",
            wraps=optuna.distributions._get_single_value) as mock_object:
        assert trial.suggest_uniform("a", 1.0,
                                     1.0) == 1.0  # Suggesting a param.
        assert mock_object.call_count == 1
        assert trial.suggest_uniform("a", 1.0,
                                     1.0) == 1.0  # Suggesting the same param.
        assert mock_object.call_count == 1

        assert trial.suggest_loguniform("b", 1.0,
                                        1.0) == 1.0  # Suggesting a param.
        assert mock_object.call_count == 2
        assert trial.suggest_loguniform(
            "b", 1.0, 1.0) == 1.0  # Suggesting the same param.
        assert mock_object.call_count == 2

        assert trial.suggest_discrete_uniform(
            "c", 1.0, 1.0, 1.0) == 1.0  # Suggesting a param.
        assert mock_object.call_count == 3
        assert (trial.suggest_discrete_uniform("c", 1.0, 1.0, 1.0) == 1.0
                )  # Suggesting the same param.
        assert mock_object.call_count == 3

        assert trial.suggest_int("d", 1, 1) == 1  # Suggesting a param.
        assert mock_object.call_count == 4
        assert trial.suggest_int("d", 1, 1) == 1  # Suggesting the same param.
        assert mock_object.call_count == 4

        assert trial.suggest_float("e", 1.0, 1.0) == 1.0  # Suggesting a param.
        assert mock_object.call_count == 5
        assert trial.suggest_float("e", 1.0,
                                   1.0) == 1.0  # Suggesting the same param.
        assert mock_object.call_count == 5

        assert trial.suggest_float("f", 0.5, 0.5,
                                   log=True) == 0.5  # Suggesting a param.
        assert mock_object.call_count == 6
        assert trial.suggest_float(
            "f", 0.5, 0.5, log=True) == 0.5  # Suggesting the same param.
        assert mock_object.call_count == 6

        assert trial.suggest_float("g", 0.5, 0.5,
                                   log=False) == 0.5  # Suggesting a param.
        assert mock_object.call_count == 7
        assert trial.suggest_float(
            "g", 0.5, 0.5, log=False) == 0.5  # Suggesting the same param.
        assert mock_object.call_count == 7

        assert trial.suggest_float("h", 0.5, 0.5,
                                   step=1.0) == 0.5  # Suggesting a param.
        assert mock_object.call_count == 8
        assert trial.suggest_float(
            "h", 0.5, 0.5, step=1.0) == 0.5  # Suggesting the same param.
        assert mock_object.call_count == 8

        assert trial.suggest_int("i", 1, 1,
                                 log=True) == 1  # Suggesting a param.
        assert mock_object.call_count == 9
        assert trial.suggest_int("i", 1, 1,
                                 log=True) == 1  # Suggesting the same param.
        assert mock_object.call_count == 9