Exemplo n.º 1
0
    def test_graph_creation(self):
        # Test multiple graph creation possibilities

        # Import ratings as DataFrame
        ratings_import = RatingsImporter(source=CSVFile(ratings_filename),
                                         from_id_column='user_id',
                                         to_id_column='item_id',
                                         score_column='points',
                                         timestamp_column='timestamp',
                                         score_processor=NumberNormalizer())
        ratings_frame = ratings_import.import_ratings()

        # Create graph using the property 'starring' from representation '0' ('dbpedia')
        g = NXTripartiteGraph(ratings_frame,
                              movies_dir,
                              item_exo_representation=0,
                              item_exo_properties=['starring'])

        # Simple assert just to make sure the graph is created
        self.assertGreater(len(g.user_nodes), 0)
        self.assertGreater(len(g.item_nodes), 0)
        self.assertGreater(len(g.property_nodes), 0)

        # Create graph specifying only the exo representation
        g = NXTripartiteGraph(ratings_frame,
                              movies_dir,
                              item_exo_representation="dbpedia")

        # Simple assert just to make sure the graph is created
        self.assertGreater(len(g.user_nodes), 0)
        self.assertGreater(len(g.item_nodes), 0)
        self.assertGreater(len(g.property_nodes), 0)

        # Create graph specifying only the exo representation
        g = NXTripartiteGraph(ratings_frame,
                              movies_dir,
                              item_exo_properties=['starring'])

        # Simple assert just to make sure the graph is created
        self.assertGreater(len(g.user_nodes), 0)
        self.assertGreater(len(g.item_nodes), 0)
        self.assertGreater(len(g.property_nodes), 0)

        # Create graph specifying without properties
        g = NXTripartiteGraph(ratings_frame)

        # Simple assert just to make sure the graph is created
        self.assertGreater(len(g.user_nodes), 0)
        self.assertGreater(len(g.item_nodes), 0)
        self.assertEqual(len(g.property_nodes), 0)
Exemplo n.º 2
0
    def test_populate_from_dataframe_w_labels(self):
        df_label = pd.DataFrame.from_dict({
            'from_id': ["1", "1", "2", "2", "2", "3", "4", "4"],
            'to_id': [
                "tt0112281", "tt0112302", "tt0112281", "tt0112346",
                "tt0112453", "tt0112453", "tt0112346", "tt0112453"
            ],
            'score': [0.8, 0.7, -0.4, 1.0, 0.4, 0.1, -0.3, 0.7],
            'label': [
                'score_df', 'score_df', 'score_df', 'score_df', 'score_df',
                'score_df', 'score_df', 'score_df'
            ]
        })

        g: NXTripartiteGraph = NXTripartiteGraph(
            df_label,
            movies_dir,
            item_exo_representation="dbpedia",
            item_exo_properties=['film director'])

        for user, item, score in zip(df_label['from_id'], df_label['to_id'],
                                     df_label['score']):
            expected = {'label': 'score_df', 'weight': score}
            result = g.get_link_data(user, item)

            self.assertEqual(expected, result)
    def setUp(self) -> None:
        self.df = pd.DataFrame.from_dict({'from_id': ["1", "1", "2", "2", "2", "3", "4", "4"],
                                          'to_id': ["tt0112281", "tt0112302", "tt0112281", "tt0112346",
                                                    "tt0112453", "tt0112453", "tt0112346", "tt0112453"],
                                          'score': [0.8, 0.7, -0.4, 1.0, 0.4, 0.1, -0.3, 0.7]})

        self.g: NXTripartiteGraph = NXTripartiteGraph(self.df, movies_dir,
                                                      item_exo_representation="dbpedia",
                                                      item_exo_properties=['film director'])