Exemplo n.º 1
0
def get_ensemble_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)

    # params['datasets'] is a list of dataset uuids
    # and sholud become a list of dicts with datasetinfos

    dslist = []
    for dsparam in params['datasets']:
        dslist.append(getdatasetparams(dsparam))
    params['datasets'] = dslist

    sdm_projections = []
    for uuid in params['sdm_projections']:
        sdm_projections.append(getdatasetparams(uuid))
    params['sdm_projections'] = sdm_projections

    # TODO: quick fix Decimal json encoding through celery
    params['thresholds'] = [float(val) for val in params['thresholds']]

    workerhints = {
        'files': ('datasets', 'sdm_projections',)
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 2
0
def get_traits_params(result):
    params = deepcopy(result.job_params)
    # get metadata for species_distribution_models
    for paramname in ('traits_dataset',):
        if not params.get(paramname, None):
            continue
        uuid = params[paramname]
        dsinfo = getdatasetparams(uuid)
        if dsinfo['filename'].endswith('.zip'):
            # FIXME: too many static assumptions about how an occurrence zip file looks like
            #        layers:key does not match anything (should it?)
            #        assumes exactly one file here
            # TODO: should I remove 'layers' section here?
            dsinfo['zippath'] = dsinfo['layers'].values()[0]['filename']
        params[paramname] = dsinfo
    # TODO: This assumes we only zip file based layers
    envlist = []
    envds = params.get('environmental_datasets') or {}
    for uuid, layers in envds.items():
        dsinfo = getdatasetparams(uuid)
        for layer in layers:
            dsdata = {
                'uuid': dsinfo['uuid'],
                'filename': dsinfo['filename'],
                'downloadurl': dsinfo['downloadurl'],
                # TODO: should we use layer title or URI?
                'layer': layer,
                'type': dsinfo['layers'][layer]['datatype']
            }
            # if this is a zip file we'll have to set zippath as well
            # FIXME: poor check whether this is a zip file
            if dsinfo['filename'].endswith('.zip'):
                dsdata['zippath'] = dsinfo['layers'][layer]['filename']
            envlist.append(dsdata)
    # replace original dict
    params['environmental_datasets'] = envlist

    # Get the content of the modelling_region BlobFile.
    # Note: deepcopy does not copy the content of BlobFile.
    if result.job_params['modelling_region']:
        params['modelling_region'] = { 
                'uuid': IUUID(result),
                'filename': 'modelling_region.json',
                'downloadurl': '{0}/API/em/v1/constraintregion?uuid={1}'.format(getSite().absolute_url(), IUUID(result)),
        }

    # add hints for worker
    workerhints = {
        'files': [x for x in ('traits_dataset', 'environmental_datasets', 'modelling_region',) if x in params]
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 3
0
def get_sdm_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)
    # TODO: names to fix up
    # occurrence-> species_occurrence_dataset
    # background-> species_absence_dataset
    # pseudoabsence['enabled']-> species_pseudo_absence_points,
    # pseudoabsence['points']-> species_number_pseudo_absence_points
    # layers+ environment{}-> environmental_datasets TODO: turn into list of files

    # get all necessary metadata for files, and add worker hints to download files
    for paramname in ('species_occurrence_dataset', 'species_absence_dataset'):
        # TODO: absence might be none
        uuid = params[paramname]
        params[paramname] = getdatasetparams(uuid)
        # replace all spaces and underscores to '.' (biomod does the same)
        # TODO: really necessary?
        if params[paramname]:
            params[paramname]['species'] = re.sub(
                u"[ _]", u".", params[paramname].get('species', u'Unknown'))
    # TODO: This assumes we only zip file based layers
    envlist = []
    for uuid, layers in params['environmental_datasets'].items():
        dsinfo = getdatasetparams(uuid)
        for layer in layers:
            dsdata = {
                'uuid': dsinfo['uuid'],
                'filename': dsinfo['filename'],
                'downloadurl': dsinfo['downloadurl'],
                'internalurl': dsinfo['internalurl'],
                # TODO: should we use layer title or URI?
                'layer': layer,
                'type': dsinfo['layers'][layer]['datatype']
            }
            # if this is a zip file we'll have to set zippath as well
            # FIXME: poor check whether this is a zip file
            if dsinfo['filename'].endswith('.zip'):
                dsdata['zippath'] = dsinfo['layers'][layer]['filename']
            envlist.append(dsdata)
    # replace original dict
    params['environmental_datasets'] = envlist
    # add hints for worker to download files
    workerhints = {
        'files': ('species_occurrence_dataset', 'species_absence_dataset',
                  'environmental_datasets')
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 4
0
def get_project_params(result):
    params = deepcopy(result.job_params)
    # get metadata for species_distribution_models
    uuid = params['species_distribution_models']
    params['species_distribution_models'] = getdatasetparams(uuid)
    # do biomod name mangling of species name
    params['species_distribution_models']['species'] = re.sub(u"[ _'\"/\(\)\{\}\[\]]", u".", params['species_distribution_models'].get('species', u"Unknown"))
    # we need the layers from sdm to fetch correct files for climate_models
    # TODO: getdatasetparams should fetch 'layers'
    sdmobj = uuidToObject(uuid)
    sdmmd = IBCCVLMetadata(sdmobj)
    params['species_distribution_models']['layers'] = sdmmd.get('layers_used', None)
    # do future climate layers
    climatelist = []
    for uuid, layers in params['future_climate_datasets'].items():
        dsinfo = getdatasetparams(uuid)
        for layer in layers:
            dsdata = {
                'uuid': dsinfo['uuid'],
                'filename': dsinfo['filename'],
                'downloadurl': dsinfo['downloadurl'],
                'layer': layer,
                'zippath': dsinfo['layers'][layer]['filename'],
                # TODO: add year, gcm, emsc here?
                'type': dsinfo['layers'][layer]['datatype'],
            }
            # if this is a zip file we'll have to set zippath as well
            # FIXME: poor check whether this is a zip file
            if dsinfo['filename'].endswith('.zip'):
                dsdata['zippath'] = dsinfo['layers'][layer]['filename']
            climatelist.append(dsdata)
    # replace climate_models parameter
    params['future_climate_datasets'] = climatelist
    params['selected_models'] = 'all'
    # projection.name from dsinfo
    # FIXME: workaround to get future projection name back, but this works only for file naming scheme with current available data
    params['projection_name'], _ = os.path.splitext(dsinfo['filename'])

    # TODO: quick fix Decimal json encoding through celery (where is my custom json encoder gone?)
    for key, item in params.items():
        if isinstance(item, Decimal):
            params[key] = float(item)

    # add hints for worker
    workerhints = {
        'files': ('species_distribution_models', 'future_climate_datasets')
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 5
0
def get_sdm_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)
    # TODO: names to fix up
    # occurrence-> species_occurrence_dataset
    # background-> species_absence_dataset
    # pseudoabsence['enabled']-> species_pseudo_absence_points,
    # pseudoabsence['points']-> species_number_pseudo_absence_points
    # layers+ environment{}-> environmental_datasets TODO: turn into list of files

    # get all necessary metadata for files, and add worker hints to download files
    for paramname in ('species_occurrence_dataset', 'species_absence_dataset'):
        # TODO: absence might be none
        uuid = params[paramname]
        params[paramname] = getdatasetparams(uuid)
        # replace all spaces and underscores to '.' (biomod does the same)
        # TODO: really necessary?
        if params[paramname]:
            params[paramname]['species'] = re.sub(u"[ _'\"/\(\)\{\}\[\]]", u".", params[paramname].get('species', u'Unknown'))
    # TODO: This assumes we only zip file based layers
    envlist = []
    for uuid, layers in params['environmental_datasets'].items():
        dsinfo = getdatasetparams(uuid)
        for layer in layers:
            dsdata = {
                'uuid': dsinfo['uuid'],
                'filename': dsinfo['filename'],
                'downloadurl': dsinfo['downloadurl'],
                'internalurl': dsinfo['internalurl'],
                # TODO: should we use layer title or URI?
                'layer': layer,
                'type': dsinfo['layers'][layer]['datatype']
            }
            # if this is a zip file we'll have to set zippath as well
            # FIXME: poor check whether this is a zip file
            if dsinfo['filename'].endswith('.zip'):
                dsdata['zippath'] = dsinfo['layers'][layer]['filename']
            envlist.append(dsdata)
    # replace original dict
    params['environmental_datasets'] = envlist
    # add hints for worker to download files
    workerhints = {
        'files':  ('species_occurrence_dataset', 'species_absence_dataset',
                   'environmental_datasets')
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 6
0
def get_traits_params(result):
    params = deepcopy(result.job_params)
    # get metadata for species_distribution_models
    uuid = params["data_table"]
    params["data_table"] = getdatasetparams(uuid)
    # add hints for worker
    workerhints = {"files": ("data_table",)}
    return {"env": {}, "params": params, "worker": workerhints}
Exemplo n.º 7
0
def get_traits_params(result):
    params = deepcopy(result.job_params)
    # get metadata for species_distribution_models
    uuid = params['data_table']
    params['data_table'] = getdatasetparams(uuid)
    # add hints for worker
    workerhints = {'files': ('data_table', )}
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 8
0
def get_project_params(result):
    params = deepcopy(result.job_params)
    # get metadata for species_distribution_models
    uuid = params['species_distribution_models']
    params['species_distribution_models'] = getdatasetparams(uuid)
    # do biomod name mangling of species name
    params['species_distribution_models']['species'] = re.sub(
        u"[ _]", u".",
        params['species_distribution_models'].get('species', u"Unknown"))
    # we need the layers from sdm to fetch correct files for climate_models
    # TODO: getdatasetparams should fetch 'layers'
    sdmobj = uuidToObject(uuid)
    sdmmd = IBCCVLMetadata(sdmobj)
    params['species_distribution_models']['layers'] = sdmmd.get(
        'layers_used', None)
    # do future climate layers
    climatelist = []
    for uuid, layers in params['future_climate_datasets'].items():
        dsinfo = getdatasetparams(uuid)
        for layer in layers:
            dsdata = {
                'uuid': dsinfo['uuid'],
                'filename': dsinfo['filename'],
                'downloadurl': dsinfo['downloadurl'],
                'internalurl': dsinfo['internalurl'],
                'layer': layer,
                'zippath': dsinfo['layers'][layer]['filename'],
                # TODO: add year, gcm, emsc here?
                'type': dsinfo['layers'][layer]['datatype'],
            }
            # if this is a zip file we'll have to set zippath as well
            # FIXME: poor check whether this is a zip file
            if dsinfo['filename'].endswith('.zip'):
                dsdata['zippath'] = dsinfo['layers'][layer]['filename']
            climatelist.append(dsdata)
    # replace climate_models parameter
    params['future_climate_datasets'] = climatelist
    params['selected_models'] = 'all'
    # projection.name from dsinfo
    # FIXME: workaround to get future projection name back, but this works only for file naming scheme with current available data
    params['projection_name'], _ = os.path.splitext(dsinfo['filename'])
    # add hints for worker
    workerhints = {
        'files': ('species_distribution_models', 'future_climate_datasets')
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 9
0
def get_traits_params(result):
    params = deepcopy(result.job_params)
    # get metadata for species_distribution_models
    uuid = params['data_table']
    params['data_table'] = getdatasetparams(uuid)
    # add hints for worker
    workerhints = {
        'files': ('data_table', )
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 10
0
def get_project_params(result):
    params = deepcopy(result.job_params)
    # get metadata for species_distribution_models
    uuid = params["species_distribution_models"]
    params["species_distribution_models"] = getdatasetparams(uuid)
    # do biomod name mangling of species name
    params["species_distribution_models"]["species"] = re.sub(
        u"[ _'\"/\(\)\{\}\[\]]", u".", params["species_distribution_models"].get("species", u"Unknown")
    )
    # we need the layers from sdm to fetch correct files for climate_models
    # TODO: getdatasetparams should fetch 'layers'
    sdmobj = uuidToObject(uuid)
    sdmmd = IBCCVLMetadata(sdmobj)
    params["species_distribution_models"]["layers"] = sdmmd.get("layers_used", None)
    # do future climate layers
    climatelist = []
    for uuid, layers in params["future_climate_datasets"].items():
        dsinfo = getdatasetparams(uuid)
        for layer in layers:
            dsdata = {
                "uuid": dsinfo["uuid"],
                "filename": dsinfo["filename"],
                "downloadurl": dsinfo["downloadurl"],
                "internalurl": dsinfo["internalurl"],
                "layer": layer,
                "zippath": dsinfo["layers"][layer]["filename"],
                # TODO: add year, gcm, emsc here?
                "type": dsinfo["layers"][layer]["datatype"],
            }
            # if this is a zip file we'll have to set zippath as well
            # FIXME: poor check whether this is a zip file
            if dsinfo["filename"].endswith(".zip"):
                dsdata["zippath"] = dsinfo["layers"][layer]["filename"]
            climatelist.append(dsdata)
    # replace climate_models parameter
    params["future_climate_datasets"] = climatelist
    params["selected_models"] = "all"
    # projection.name from dsinfo
    # FIXME: workaround to get future projection name back, but this works only for file naming scheme with current available data
    params["projection_name"], _ = os.path.splitext(dsinfo["filename"])
    # add hints for worker
    workerhints = {"files": ("species_distribution_models", "future_climate_datasets")}
    return {"env": {}, "params": params, "worker": workerhints}
Exemplo n.º 11
0
def get_ensemble_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)

    # params['datasets'] is a list of dataset uuids
    # and sholud become a list of dicts with datasetinfos

    dslist = []
    for dsparam in params['datasets']:
        dslist.append(getdatasetparams(dsparam))
    # replace datasets param
    params['datasets'] = dslist

    workerhints = {'files': ('datasets', )}
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 12
0
def get_ensemble_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)

    # params['datasets'] is a list of dataset uuids
    # and sholud become a list of dicts with datasetinfos

    dslist = []
    for dsparam in params["datasets"]:
        dslist.append(getdatasetparams(dsparam))
    # replace datasets param
    params["datasets"] = dslist

    workerhints = {"files": ("datasets",)}
    return {"env": {}, "params": params, "worker": workerhints}
Exemplo n.º 13
0
def get_biodiverse_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)

    # params['projections'] is a list of dicts with 'threshold' and 'uuid'
    # and sholud become a list of dicts with datasetinfos + threshold?

    dslist = []
    for dsparam in params['projections']:
        dsinfo = getdatasetparams(dsparam['dataset'])
        dsinfo['threshold'] = dsparam['threshold']
        dslist.append(dsinfo)
    # replace projections param
    params['projections'] = dslist

    workerhints = {'files': ('projections', )}
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 14
0
def get_ensemble_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)

    # params['datasets'] is a list of dataset uuids
    # and sholud become a list of dicts with datasetinfos

    dslist = []
    for dsparam in params['datasets']:
        dslist.append(getdatasetparams(dsparam))
    # replace datasets param
    params['datasets'] = dslist

    workerhints = {
        'files': ('datasets', )
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 15
0
def get_biodiverse_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)

    # params['projections'] is a list of dicts with 'threshold' and 'uuid'
    # and sholud become a list of dicts with datasetinfos + threshold?

    dslist = []
    for dsparam in params['projections']:
        dsinfo = getdatasetparams(dsparam['dataset'])
        dsinfo['threshold'] = dsparam['threshold']
        dslist.append(dsinfo)
    # replace projections param
    params['projections'] = dslist

    workerhints = {
        'files': ('projections', )
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 16
0
def get_biodiverse_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)

    # params['projections'] is a list of dicts with 'threshold' and 'uuid'
    # and sholud become a list of dicts with datasetinfos + threshold?

    dslist = []
    for dsparam in params['projections']:
        dsinfo = getdatasetparams(dsparam['dataset'])
        dsinfo['threshold'] = dsparam['threshold']
        dslist.append(dsinfo)
    # replace projections param
    params['projections'] = dslist

    # TODO: quick fix Decimal json encoding through celery (where is my custom
    # json encoder gone?)
    # -> problem is oslo jsonutils, whihch patches anyjson with it's own
    #    loads/dumps methods.
    # we would normally use simplejson, which supports decimal, but oslo
    # patches it in a way so that decimal no longer works
    for key, item in params.items():
        if isinstance(item, Decimal):
            params[key] = float(item)
    # ptach threshold vasue as well
    for pds in params['projections']:
        thresholds = pds['threshold']
        for key, item in thresholds.items():
            if isinstance(item, Decimal):
                thresholds[key] = float(item)

    workerhints = {
        'files': ('projections', )
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 17
0
def get_sdm_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)
    # TODO: names to fix up
    # occurrence-> species_occurrence_dataset
    # background-> species_absence_dataset
    # pseudoabsence['enabled']-> species_pseudo_absence_points,
    # pseudoabsence['points']-> species_number_pseudo_absence_points
    # layers+ environment{}-> environmental_datasets TODO: turn into list of files

    # get all necessary metadata for files, and add worker hints to download files
    for paramname in ('species_occurrence_dataset', 'species_absence_dataset'):
        # Skip empty or non existing params
        if not params.get(paramname, None):
            continue
        uuid = params[paramname]
        dsinfo = getdatasetparams(uuid)
        if dsinfo['filename'].endswith('.zip'):
            # FIXME: too many static assumptions about how an occurrence zip file looks like
            #        layers:key does not match anything (should it?)
            #        assumes exactly one file here
            # TODO: should I remove 'layers' section here?
            dsinfo['zippath'] = dsinfo['layers'].values()[0]['filename']
        params[paramname] =  dsinfo
        # replace all spaces and underscores to '.' (biomod does the same)
        # TODO: really necessary?
        if params[paramname]:
            params[paramname]['species'] = re.sub(u"[ _,'\"/\(\)\{\}\[\]]", u".", params[paramname].get('species', u'Unknown'))
    # TODO: This assumes we only zip file based layers
    envlist = []
    for uuid, layers in params['environmental_datasets'].items():
        dsinfo = getdatasetparams(uuid)
        for layer in layers:
            dsdata = {
                'uuid': dsinfo['uuid'],
                'filename': dsinfo['filename'],
                'downloadurl': dsinfo['downloadurl'],
                # TODO: should we use layer title or URI?
                'layer': layer,
                'type': dsinfo['layers'][layer]['datatype']
            }
            # if this is a zip file we'll have to set zippath as well
            # FIXME: poor check whether this is a zip file
            if dsinfo['filename'].endswith('.zip'):
                dsdata['zippath'] = dsinfo['layers'][layer]['filename']
            envlist.append(dsdata)
    # replace original dict
    params['environmental_datasets'] = envlist

    # TODO: quick fix Decimal json encoding through celery (where is my custom json encoder gone?)
    for key, item in params.items():
        if isinstance(item, Decimal):
            params[key] = float(item)

    # add hints for worker to download files
    workerhints = {
        # only those parameters that are actually in params dict
        'files':  [x for x in ('species_occurrence_dataset', 'species_absence_dataset', 'environmental_datasets') if x in params]
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 18
0
def get_traits_params(result):
    params = deepcopy(result.job_params)
    # get metadata for species_distribution_models
    for paramname in ('traits_dataset', ):
        if not params.get(paramname, None):
            continue
        uuid = params[paramname]
        dsinfo = getdatasetparams(uuid)
        if dsinfo['filename'].endswith('.zip'):
            # FIXME: too many static assumptions about how an occurrence zip file looks like
            #        layers:key does not match anything (should it?)
            #        assumes exactly one file here
            # TODO: should I remove 'layers' section here?
            dsinfo['zippath'] = dsinfo['layers'].values()[0]['filename']
        params[paramname] = dsinfo
    # TODO: This assumes we only zip file based layers
    envlist = []
    envds = params.get('environmental_datasets') or {}
    for uuid, layers in envds.items():
        dsinfo = getdatasetparams(uuid)
        for layer in layers:
            dsdata = {
                'uuid': dsinfo['uuid'],
                'filename': dsinfo['filename'],
                'downloadurl': dsinfo['downloadurl'],
                # TODO: should we use layer title or URI?
                'layer': layer,
                'type': dsinfo['layers'][layer]['datatype']
            }
            # if this is a zip file we'll have to set zippath as well
            # FIXME: poor check whether this is a zip file
            if dsinfo['filename'].endswith('.zip'):
                dsdata['zippath'] = dsinfo['layers'][layer]['filename']
            envlist.append(dsdata)
    # replace original dict
    params['environmental_datasets'] = envlist

    # Get the content of the modelling_region BlobFile.
    # Note: deepcopy does not copy the content of BlobFile.
    if result.job_params['modelling_region']:
        params['modelling_region'] = {
            'uuid':
            IUUID(result),
            'filename':
            'modelling_region.json',
            'downloadurl':
            '{0}/API/em/v1/constraintregion?uuid={1}'.format(
                getSite().absolute_url(), IUUID(result)),
        }

    # add hints for worker
    workerhints = {
        'files': [
            x for x in (
                'traits_dataset',
                'environmental_datasets',
                'modelling_region',
            ) if x in params
        ]
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 19
0
    def __generateParameters(self, params, portal_type):
        # This code formats the input parameters to experiments, and is a mirror "copy" of get_sdm_params, 
        # get_project_params, get_biodiverse_params, get_traits_params, get_ensemble_params in org.bccvl.compute.
        inp = deepcopy(params)
        for key, val in inp.items():
            if key in ('modelling_region', 'projection_region'):
                if val:
                    val = params[key].data
                else: 
                    val = '{0}/API/em/v1/constraintregion?uuid={1}'.format(getSite().absolute_url(), IUUID(self.context))

            if key in ('species_occurrence_dataset', 'species_absence_dataset'):
                if val:
                    val = getdatasetparams(val)
                    val['species'] = re.sub(u"[ _,\-'\"/\(\)\{\}\[\]]", u".", val.get('species', u'Unknown'))

            if key in ('environmental_datasets', 'future_climate_datasets'):
                envlist = []
                for uuid, layers in val.items():
                    dsinfo = getdatasetparams(uuid)
                    for layer in layers:
                        dsdata = {
                            'uuid': dsinfo['uuid'],
                            'filename': dsinfo['filename'],
                            'downloadurl': dsinfo['downloadurl'],
                            # TODO: should we use layer title or URI?
                            'layer': layer,
                            'type': dsinfo['layers'][layer]['datatype']
                        }
                        # if this is a zip file we'll have to set zippath as well
                        # FIXME: poor check whether this is a zip file
                        if dsinfo['filename'].endswith('.zip'):
                            dsdata['zippath'] = dsinfo['layers'][layer]['filename']
                        envlist.append(dsdata)
                val = envlist

            # for SDM model as input to Climate Change experiement
            if key == 'species_distribution_models':
                if val:
                    uuid = val
                    val = getdatasetparams(uuid)
                    val['species'] = re.sub(u"[ _\-'\"/\(\)\{\}\[\]]", u".", val.get('species', u"Unknown"))
                    sdmobj = uuidToObject(uuid)
                    sdmmd = IBCCVLMetadata(sdmobj)
                    val['layers'] = sdmmd.get('layers_used', None)

                    # do SDM projection results
                    sdm_projections = []
                    for resuuid in inp['sdm_projections']:
                         sdm_projections.append(getdatasetparams(resuuid))
                    inp['sdm_projections'] = sdm_projections

            # for projection as input to Biodiverse experiment
            if key == 'projections':
                dslist = []
                for dsparam in val:
                    dsinfo = getdatasetparams(dsparam['dataset'])
                    dsinfo['threshold'] = dsparam['threshold']
                    # Convert threshold value from Decimal to float
                    for thkey, thvalue in dsinfo['threshold'].items():
                        if isinstance(thvalue, Decimal):
                            dsinfo['threshold'][thkey] = float(thvalue)
                    dslist.append(dsinfo)
                # replace projections param
                val = dslist

            # projection models as input to Ensemble experiment
            if key == 'datasets':
                dslist = []
                for uuid in val:
                    dslist.append(getdatasetparams(uuid))
                # replace datasets param
                val = dslist

            # for trait dataset as input to Species Trait Modelling experiment
            if key == 'traits_dataset':
                dsinfo = getdatasetparams(val)
                if dsinfo['filename'].endswith('.zip'):
                    dsinfo['zippath'] = dsinfo['layers'].values()[0]['filename']
                val = dsinfo

            if isinstance(val, Decimal):
                val = float(val)
            inp[key] = val

        if portal_type == ('org.bccvl.content.sdmexperiment',
                           'org.bccvl.content.msdmexperiment',
                           'org.bccvl.content.mmexperiment'):
            inp.update({
                'rescale_all_models': False,
                'selected_models': 'all',
                'modeling_id': 'bccvl',
                # generic dismo params
                'tails': 'both',
                })
        elif portal_type == 'org.bccvl.content.projectionexperiment':
            inp.update({
                'selected_models': 'all',
                'projection_name': os.path.splitext(dsinfo['filename'])[0]
                })

        inputParams = {
            # example of input/ouput directories
            'env': {
                'inputdir': './input',
                'outputdir': './output',
                'scriptdir': './script',
                'workdir': './workdir'
            },
            'params': inp
        }
        return json.dumps(inputParams, default=str, indent=4)
Exemplo n.º 20
0
def get_project_params(result):
    params = deepcopy(result.job_params)
    # get metadata for species_distribution_models
    uuid = params['species_distribution_models']
    params['species_distribution_models'] = getdatasetparams(uuid)
    # do biomod name mangling of species name
    params['species_distribution_models']['species'] = re.sub(u"[ _\-'\"/\(\)\{\}\[\]]", u".", params['species_distribution_models'].get('species', u"Unknown"))
    # we need the layers from sdm to fetch correct files for climate_models
    # TODO: getdatasetparams should fetch 'layers'
    sdmobj = uuidToObject(uuid)
    sdmmd = IBCCVLMetadata(sdmobj)
    params['species_distribution_models']['layers'] = sdmmd.get('layers_used', None)

    # do SDM projection results
    sdm_projections = []
    for resuuid in params['sdm_projections']:
         sdm_projections.append(getdatasetparams(resuuid))
    params['sdm_projections'] = sdm_projections

    # do future climate layers
    climatelist = []
    for uuid, layers in params['future_climate_datasets'].items():
        dsinfo = getdatasetparams(uuid)
        for layer in layers:
            dsdata = {
                'uuid': dsinfo['uuid'],
                'filename': dsinfo['filename'],
                'downloadurl': dsinfo['downloadurl'],
                'layer': layer,
                # TODO: add year, gcm, emsc here?
                'type': dsinfo['layers'][layer]['datatype'],
            }
            # if this is a zip file we'll have to set zippath as well
            # FIXME: poor check whether this is a zip file
            if dsinfo['filename'].endswith('.zip'):
                dsdata['zippath'] = dsinfo['layers'][layer]['filename']

            # FIXME: workaround to get future projection name back, but this works only for file naming scheme with current available data
            if params['selected_future_layers'] and layer in params['selected_future_layers']:
                params['projection_name'], _ = os.path.splitext(dsinfo['filename'])
            climatelist.append(dsdata)
    # replace climate_models parameter
    params['future_climate_datasets'] = climatelist
    params['selected_models'] = 'all'

    # In case no future climate layer is selected
    if not params.get('projection_name'):
        params['projection_name'], _ = os.path.splitext(dsinfo['filename'])

    # TODO: quick fix Decimal json encoding through celery (where is my custom json encoder gone?)
    for key, item in params.items():
        if isinstance(item, Decimal):
            params[key] = float(item)

    # Get the content of the projection_region BlobFile.
    # Note: deepcopy does not copy the content of BlobFile.
    params['projection_region'] = { 
            'uuid': IUUID(result),
            'filename': 'projection_region.json',
            'downloadurl': '{0}/API/em/v1/constraintregion?uuid={1}'.format(getSite().absolute_url(), IUUID(result)),
    }

    # add hints for worker
    workerhints = {
        'files': ('species_distribution_models', 'future_climate_datasets', 'sdm_projections', 'projection_region',)
    }
    return {'env': {}, 'params': params, 'worker': workerhints}
Exemplo n.º 21
0
    def __generateParameters(self, params, portal_type):
        # This code formats the input parameters to experiments, and is a mirror "copy" of get_sdm_params,
        # get_project_params, get_biodiverse_params, get_traits_params, get_ensemble_params in org.bccvl.compute.
        inp = deepcopy(params)
        for key, val in inp.items():
            if key in ('modelling_region', 'projection_region'):
                if val:
                    val = params[key].data
                else:
                    val = '{0}/API/em/v1/constraintregion?uuid={1}'.format(
                        getSite().absolute_url(), IUUID(self.context))

            if key in ('species_occurrence_dataset',
                       'species_absence_dataset'):
                if val:
                    val = getdatasetparams(val)
                    val['species'] = re.sub(u"[ _,\-'\"/\(\)\{\}\[\]]", u".",
                                            val.get('species', u'Unknown'))

            if key in ('environmental_datasets', 'future_climate_datasets'):
                envlist = []
                for uuid, layers in val.items():
                    dsinfo = getdatasetparams(uuid)
                    for layer in layers:
                        dsdata = {
                            'uuid': dsinfo['uuid'],
                            'filename': dsinfo['filename'],
                            'downloadurl': dsinfo['downloadurl'],
                            # TODO: should we use layer title or URI?
                            'layer': layer,
                            'type': dsinfo['layers'][layer]['datatype']
                        }
                        # if this is a zip file we'll have to set zippath as well
                        # FIXME: poor check whether this is a zip file
                        if dsinfo['filename'].endswith('.zip'):
                            dsdata['zippath'] = dsinfo['layers'][layer][
                                'filename']
                        envlist.append(dsdata)
                val = envlist

            # for SDM model as input to Climate Change experiement
            if key == 'species_distribution_models':
                if val:
                    uuid = val
                    val = getdatasetparams(uuid)
                    val['species'] = re.sub(u"[ _\-'\"/\(\)\{\}\[\]]", u".",
                                            val.get('species', u"Unknown"))
                    sdmobj = uuidToObject(uuid)
                    sdmmd = IBCCVLMetadata(sdmobj)
                    val['layers'] = sdmmd.get('layers_used', None)

                    # do SDM projection results
                    sdm_projections = []
                    for resuuid in inp['sdm_projections']:
                        sdm_projections.append(getdatasetparams(resuuid))
                    inp['sdm_projections'] = sdm_projections

            # for projection as input to Biodiverse experiment
            if key == 'projections':
                dslist = []
                for dsparam in val:
                    dsinfo = getdatasetparams(dsparam['dataset'])
                    dsinfo['threshold'] = dsparam['threshold']
                    # Convert threshold value from Decimal to float
                    for thkey, thvalue in dsinfo['threshold'].items():
                        if isinstance(thvalue, Decimal):
                            dsinfo['threshold'][thkey] = float(thvalue)
                    dslist.append(dsinfo)
                # replace projections param
                val = dslist

            # projection models as input to Ensemble experiment
            if key == 'datasets':
                dslist = []
                for uuid in val:
                    dslist.append(getdatasetparams(uuid))
                # replace datasets param
                val = dslist

            # for trait dataset as input to Species Trait Modelling experiment
            if key == 'traits_dataset':
                dsinfo = getdatasetparams(val)
                if dsinfo['filename'].endswith('.zip'):
                    dsinfo['zippath'] = dsinfo['layers'].values(
                    )[0]['filename']
                val = dsinfo

            if isinstance(val, Decimal):
                val = float(val)
            inp[key] = val

        if portal_type == ('org.bccvl.content.sdmexperiment',
                           'org.bccvl.content.msdmexperiment',
                           'org.bccvl.content.mmexperiment'):
            inp.update({
                'rescale_all_models': False,
                'selected_models': 'all',
                'modeling_id': 'bccvl',
                # generic dismo params
                'tails': 'both',
            })
        elif portal_type == 'org.bccvl.content.projectionexperiment':
            inp.update({
                'selected_models':
                'all',
                'projection_name':
                os.path.splitext(dsinfo['filename'])[0]
            })

        inputParams = {
            # example of input/ouput directories
            'env': {
                'inputdir': './input',
                'outputdir': './output',
                'scriptdir': './script',
                'workdir': './workdir'
            },
            'params': inp
        }
        return json.dumps(inputParams, default=str, indent=4)
Exemplo n.º 22
0
def get_sdm_params(result):
    # make a deep copy of the params to not accedientially modify the
    # persisted dict
    params = deepcopy(result.job_params)
    # TODO: names to fix up
    # occurrence-> species_occurrence_dataset
    # background-> species_absence_dataset
    # pseudoabsence['enabled']-> species_pseudo_absence_points,
    # pseudoabsence['points']-> species_number_pseudo_absence_points
    # layers+ environment{}-> environmental_datasets TODO: turn into list of files

    # get all necessary metadata for files, and add worker hints to download files
    for paramname in ('species_occurrence_dataset', 'species_absence_dataset'):
        # Skip empty or non existing params
        if not params.get(paramname, None):
            continue
        uuid = params[paramname]
        dsinfo = getdatasetparams(uuid)
        if dsinfo['filename'].endswith('.zip'):
            # FIXME: too many static assumptions about how an occurrence zip file looks like
            #        layers:key does not match anything (should it?)
            #        assumes exactly one file here
            # TODO: should I remove 'layers' section here?
            dsinfo['zippath'] = dsinfo['layers'].values()[0]['filename']
        params[paramname] = dsinfo
        # replace all spaces and underscores to '.' (biomod does the same)
        # TODO: really necessary?
        if params[paramname]:
            params[paramname]['species'] = re.sub(
                u"[ _\-,'\"/\(\)\{\}\[\]]", u".",
                params[paramname].get('species', u'Unknown'))
    # TODO: This assumes we only zip file based layers
    envlist = []
    for uuid, layers in params['environmental_datasets'].items():
        dsinfo = getdatasetparams(uuid)
        for layer in layers:
            dsdata = {
                'uuid': dsinfo['uuid'],
                'filename': dsinfo['filename'],
                'downloadurl': dsinfo['downloadurl'],
                # TODO: should we use layer title or URI?
                'layer': layer,
                'type': dsinfo['layers'][layer]['datatype']
            }
            # if this is a zip file we'll have to set zippath as well
            # FIXME: poor check whether this is a zip file
            if dsinfo['filename'].endswith('.zip'):
                dsdata['zippath'] = dsinfo['layers'][layer]['filename']
            envlist.append(dsdata)
    # replace original dict
    params['environmental_datasets'] = envlist

    # TODO: quick fix Decimal json encoding through celery (where is my custom json encoder gone?)
    for key, item in params.items():
        if isinstance(item, Decimal):
            params[key] = float(item)

    # Pass the url to get modelling region as input file
    if result.job_params['modelling_region']:
        params['modelling_region'] = {
            'uuid':
            IUUID(result),
            'filename':
            'modelling_region.json',
            'downloadurl':
            '{0}/API/em/v1/constraintregion?uuid={1}'.format(
                getSite().absolute_url(), IUUID(result)),
        }

    # add hints for worker to download files
    workerhints = {
        # only those parameters that are actually in params dict
        'files': [
            x for x in (
                'species_occurrence_dataset',
                'species_absence_dataset',
                'environmental_datasets',
                'modelling_region',
            ) if x in params
        ]
    }
    return {'env': {}, 'params': params, 'worker': workerhints}