Exemplo n.º 1
0
    def solve_via_data(
        self,
        data: Dict[str, Any],
        warm_start: bool,
        verbose: bool,
        solver_opts: Dict[str, Any],
        solver_cache: Dict = None,
    ) -> Solution:
        """Returns the result of the call to the solver."""
        from google.protobuf import text_format
        from ortools.glop import parameters_pb2
        from ortools.linear_solver import linear_solver_pb2, pywraplp

        response = linear_solver_pb2.MPSolutionResponse()

        solver = pywraplp.Solver.CreateSolver('GLOP')
        solver.LoadModelFromProto(data[self.MODEL_PROTO])
        if verbose:
            solver.EnableOutput()
        if "parameters_proto" in solver_opts:
            proto = solver_opts["parameters_proto"]
            if not isinstance(proto, parameters_pb2.GlopParameters):
                log.error("parameters_proto must be a GlopParameters")
                return {"status": s.SOLVER_ERROR}
            proto_str = text_format.MessageToString(proto)
            if not solver.SetSolverSpecificParametersAsString(proto_str):
                return {"status": s.SOLVER_ERROR}
        if "time_limit_sec" in solver_opts:
            solver.SetTimeLimit(1000 * float(solver_opts["time_limit_sec"]))
        solver.Solve()
        solver.FillSolutionResponseProto(response)

        solution = {}
        solution["value"] = response.objective_value
        solution["status"] = self._status_map(response)
        has_primal = data["num_vars"] == 0 or len(response.variable_value) > 0
        if has_primal:
            solution["primal"] = array(response.variable_value)
        else:
            solution["primal"] = None
        has_dual = data["num_constraints"] == 0 or len(response.dual_value) > 0
        if has_dual:
            solution["dual"] = array(response.dual_value)
        else:
            solution["dual"] = None

        # Make solution status more precise depending on whether a solution is
        # present.
        if solution["status"] == s.SOLVER_ERROR and has_primal and has_dual:
            solution["status"] = s.USER_LIMIT

        return solution
Exemplo n.º 2
0
def test_proto():
    input_proto = linear_solver_pb2.MPModelRequest()
    text_format.Merge(text_model, input_proto)
    solver = pywraplp.Solver('solveFromProto',
                             pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
    print(input_proto)
    # For now, create the model from the proto by parsing the proto
    solver.LoadModelFromProto(input_proto.model)
    solver.EnableOutput()
    solver.Solve()
    # Fill solution
    solution = linear_solver_pb2.MPSolutionResponse()
    solver.FillSolutionResponseProto(solution)
    print(solution)
Exemplo n.º 3
0
 def test_proto(self):
     input_proto = linear_solver_pb2.MPModelProto()
     text_format.Merge(TEXT_MODEL, input_proto)
     solver = pywraplp.Solver('solveFromProto',
                              pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
     # For now, create the model from the proto by parsing the proto
     errors = solver.LoadModelFromProto(input_proto)
     self.assertFalse(errors)
     solver.Solve()
     # Fill solution
     solution = linear_solver_pb2.MPSolutionResponse()
     solver.FillSolutionResponseProto(solution)
     self.assertEqual(solution.objective_value, 3.0)
     self.assertEqual(solution.variable_value[0], 1.0)
     self.assertEqual(solution.variable_value[1], 1.0)
     self.assertEqual(solution.best_objective_bound, 3.0)
Exemplo n.º 4
0
 def testSolveFromProto(self):
     solver = pywraplp.Solver('', pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
     solver.LoadSolutionFromProto(linear_solver_pb2.MPSolutionResponse())