def get_humans_from_dataset(dataset, path=None): videos_processed = {} outfile = osp.curdir() if path is None else path print('processing videos wait...') process_dataset(dataset, videos_processed, outfile) outfile = osp.join(outfile, 'positions.npz') np.savez(outfile, **videos_processed) print('the file is saved in ', outfile)
def change_player_list(): player_list_path = join(curdir(), 'data', 'player_lists') list_choices = [ f for f in listdir(player_list_path) if isfile(join(player_list_path, f)) ] for i in range(len(list_choices)): print('{:3}- {}'.format(i + 1, list_choices[i][:-4].replace('_', ' ').title())) choice = san.sanitize_int("Choose the player list you would like to use: ", 1, len(list_choices)) return list_choices[choice - 1][:-4]
def _default_output_directory(data_source, default_output_dirname): source_dir = path.dirname(data_source) default_dir = path.join(source_dir, default_output_dirname) if not path.isdir(default_dir): try: mkdir(default_dir) except OSError: print( 'could not create default directory {}. Using current directory instead' .format(default_dir)) default_dir = path.curdir() return default_dir
def get_humans_from_dataset(dataset, path=None): from tf_pose.estimator import TfPoseEstimator from tf_pose.networks import get_graph_path e = TfPoseEstimator(get_graph_path('cmu'), target_size=(432, 368)) videos_processed = {} outfile = osp.curdir() if path is None else path print('processing videos wait...') for video in dataset: video_name = video[1]['class']+'_' + \ video[1]['consultant']+'_'+video[1]['repetition'] try: videos_processed[video_name] = process_video(video[0], e) except InferenceError as ie: videos_processed[video_name] = ie.args error_handle(ie.args, outfile, video_name) outfile = osp.join(outfile, 'dataset_humans.npz') np.savez(outfile, **videos_processed) print('the file is saved in ', outfile)