Exemplo n.º 1
0
 def install(self):
     debug(self._label + "install files")
     src_install = pjoin(Settings.CONTROL_PATH, self._package["package"] + ".install")
     if not pexists(src_install):
         warning("Missing: " + src_install)
         return
     try:
         lineno = 0
         with open(src_install) as fin:
             for line in fin:
                 lineno += 1
                 src, dst = line.strip().split(" ", 1)
                 dst = dst.strip()
                 if dst.startswith("/"):
                     dst = "." + dst
                 dst = pjoin(self._env["QPKG_DEST_DATA"], dst)
                 if not pexists(dst):
                     makedirs(dst)
                 src_files = glob(src)
                 if not src_files:
                     raise FileSyntaxError(src_install, lineno, "`{}` not found".format(src))
                 for fn in glob(src):
                     try:
                         sp.check_call(["cp", "-a", fn, dst])
                     except sp.CalledProcessError as e:
                         warning("Error in copy files: {}".format(e))
                         return -1
     except ValueError:
         raise FileSyntaxError(src_install, lineno, line)
Exemplo n.º 2
0
Arquivo: cook.py Projeto: yen3/qdk2
 def links(self):
     debug(self._label + 'create additional symlinks')
     src_install = pjoin(Settings.CONTROL_PATH,
                         self._package['package'] + '.links')
     if not pexists(src_install):
         return
     try:
         lineno = 0
         with open(src_install) as fin:
             for line in fin:
                 lineno += 1
                 src, dst = line.strip().split(' ', 1)
                 dst = dst.strip()
                 if dst.startswith('/'):
                     dst = '.' + dst
                 dst = pjoin(self._env['QPKG_DEST_DATA'], dst)
                 if dst.endswith('/'):
                     if not pexists(dst):
                         makedirs(dst)
                     dst = pjoin(dst, pbasename(src))
                 else:
                     if not pexists(pdirname(dst)):
                         makedirs(pdirname(dst))
                 symlink(src, dst)
     except ValueError:
         raise FileSyntaxError(src_install, lineno, line)
Exemplo n.º 3
0
 def links(self):
     debug(self._label + "create additional symlinks")
     src_install = pjoin(Settings.CONTROL_PATH, self._package["package"] + ".links")
     if not pexists(src_install):
         return
     try:
         lineno = 0
         with open(src_install) as fin:
             for line in fin:
                 lineno += 1
                 src, dst = line.strip().split(" ", 1)
                 dst = dst.strip()
                 if dst.startswith("/"):
                     dst = "." + dst
                 dst = pjoin(self._env["QPKG_DEST_DATA"], dst)
                 if dst.endswith("/"):
                     if not pexists(dst):
                         makedirs(dst)
                     dst = pjoin(dst, pbasename(src))
                 else:
                     if not pexists(pdirname(dst)):
                         makedirs(pdirname(dst))
                 symlink(src, dst)
     except ValueError:
         raise FileSyntaxError(src_install, lineno, line)
Exemplo n.º 4
0
def load_best_model_from_trained_dir(the_dir):
    ''' Follow the model architecture in main.py '''
    if not pexists(pjoin(the_dir, 'MY_IS_FINISHED')):
        with Timer('copying from v'):
            cmd = 'rsync -avzL v:/h/kingsley/node/%s/ %s' % (the_dir, the_dir)
            print(cmd)
            os.system(cmd)

    hparams = load_hparams(the_dir)

    from . import arch
    model, step_callbacks = getattr(arch, hparams['arch'] +
                                    'Block').load_model_by_hparams(
                                        hparams, ret_step_callback=True)

    # Set the step!
    if step_callbacks is not None and len(step_callbacks) > 0:
        bstep = json.load(open(pjoin(the_dir,
                                     'recorder.json')))['best_step_err']
        for c in step_callbacks:
            c(bstep)

    best_ckpt = pjoin(the_dir, 'checkpoint_{}.pth'.format('best'))
    if not pexists(best_ckpt):
        print('NO BEST CHECKPT EXISTS in {}!'.format(best_ckpt))
        return None

    tmp = torch.load(best_ckpt, map_location='cpu')
    model.load_state_dict(tmp['model'])
    model.train(False)
    return model
Exemplo n.º 5
0
Arquivo: cook.py Projeto: yen3/qdk2
 def install(self):
     debug(self._label + 'install files')
     src_install = pjoin(Settings.CONTROL_PATH,
                         self._package['package'] + '.install')
     if not pexists(src_install):
         warning('Missing: ' + src_install)
         return
     try:
         lineno = 0
         with open(src_install) as fin:
             for line in fin:
                 lineno += 1
                 src, dst = line.strip().split(' ', 1)
                 dst = dst.strip()
                 if dst.startswith('/'):
                     dst = '.' + dst
                 dst = pjoin(self._env['QPKG_DEST_DATA'], dst)
                 if not pexists(dst):
                     makedirs(dst)
                 src_files = glob(src)
                 if not src_files:
                     raise FileSyntaxError(src_install, lineno,
                                           '`{}` not found'.format(src))
                 for fn in glob(src):
                     try:
                         sp.check_call(['cp', '-a', fn, dst])
                     except sp.CalledProcessError as e:
                         warning('Error in copy files: {}'.format(e))
                         return -1
     except ValueError:
         raise FileSyntaxError(src_install, lineno, line)
Exemplo n.º 6
0
    def on_test_start(self, trainer, pl_module):
        result_f = pjoin(pl_module.hparams.logdir, pl_module.hparams.name,
                         'results.tsv')
        if not pexists(result_f):
            raise Exception('WIERD!!!! No results.tsv found in the model directory.')

        bpath = pjoin(pl_module.hparams.logdir, pl_module.hparams.name, 'best.ckpt')
        if not pexists(bpath):
            df = pd.read_csv(result_f, delimiter='\t')

            func = {'min': np.argmin, 'max': np.argmax}[
                trainer.checkpoint_callback.mode]
            best_idx = int(func(df[trainer.checkpoint_callback.monitor].values))
            best_record = df.iloc[best_idx].to_dict()
            best_epoch = best_record['epoch']

            best_filename = trainer.checkpoint_callback.format_checkpoint_name(
                best_epoch, best_record)

            os.symlink(best_filename, bpath)
        assert pexists(bpath), 'Best model %s does not exist!' % bpath

        best_pl_module = pl_module.load_from_checkpoint(bpath)
        pl_module.model.load_state_dict(best_pl_module.model.state_dict())
        pl_module.current_epoch = best_pl_module.current_epoch
        pl_module.global_step = best_pl_module.global_step
        print('Load best model from %s' % bpath)
Exemplo n.º 7
0
def make_vis_pial_surface(in_dir, subject_id, out_dir, annot_file='aparc.annot'):
    """Generate screenshot for the pial surface in different views"""

    out_vis_dir = pjoin(out_dir, cfg.annot_vis_dir_name)
    makedirs(out_vis_dir, exist_ok=True)
    hemis = ('lh', 'rh')
    hemis_long = ('left', 'right')
    vis_list = dict()

    print('Processing {}'.format(subject_id))
    for hemi, hemi_l in zip(hemis, hemis_long):
        vis_list[hemi_l] = dict()
        script_file, vis_files = make_tcl_script_vis_annot(subject_id, hemi_l, out_vis_dir, annot_file)
        try:
            # run the script only if all the visualizations were not generated before
            all_vis_exist = all([pexists(vis_path) for vis_path in vis_files.values()])
            if not all_vis_exist:
                _, _ = run_tksurfer_script(in_dir, subject_id, hemi, script_file)

            vis_list[hemi_l].update(vis_files)
        except:
            traceback.print_exc()
            print('unable to generate tksurfer visualizations for {} hemi - skipping'.format(hemi))

    # flattening it for easier use later on
    out_vis_list = dict()
    pref_order = [ ('right', 'lateral'), ('left', 'lateral'),
                   ('right', 'medial'), ('left', 'medial'),
                   ('right', 'transverse'), ('left', 'transverse')]
    for hemi_l, view in pref_order:
        if pexists(vis_list[hemi_l][view]):
            out_vis_list[(hemi_l, view)] = vis_list[hemi_l][view]

    return out_vis_list
Exemplo n.º 8
0
    def load(self):
        """

        Loads the assignment (checks all paths are proper and
        loads all assignment questions)
        :raises AssertionError: invalid assignment

        """
        # checking that assignment has correct paths
        n = self.full_name
        assert pexists(self.log_path), \
            f'started assignment "{n}" with no log directory'
        assert pexists(self.rubric_path), \
            f'started assignment "{n}" with no rubric directory'
        assert pexists(self.grade_path), \
            f'started assignment "{n}" with no grade directory'
        assert pexists(self.blocklist_path), \
            f'started assignment "{n}" with no blocklist file'
        assert pexists(self.files_path), \
            f'started assignment "{n}" with no student code directory'
        
        if not self.anonymous:
            with locked_file(self.anon_path) as f:
                data: Dict[str, int] = json.load(f)

            self._login_to_id_map: Dict[str, int] = data
            self._id_to_login_map: Dict[int, str] = {data[k]: k for k in data}

        self._load_questions()
        self.loaded = True
        return self
Exemplo n.º 9
0
    def on_test_start(self, trainer, pl_module):
        # Check if it already runs
        dr_exp = ''
        if pl_module.is_data_ratio_exp():
            dr_exp += 'dr_'
        if pl_module.is_bbox_noise_exp():
            dr_exp += 'bn_'
        ood_fname = pjoin(pl_module.hparams.result_dir,
                          f'{pl_module.__class__.__name__}_{dr_exp}ood_results.tsv')
        if pexists(ood_fname):
            ood_df = pd.read_csv(ood_fname, delimiter='\t')
            if pl_module.hparams.name in set(ood_df['name']):
                print('Already ood test for %s. Exit!' % pl_module.hparams.name)
                sys.exit()

        # For OOD detections
        bpath = pjoin(pl_module.hparams.logdir, pl_module.hparams.name, 'best.ckpt')
        assert pexists(bpath), 'Best path %s not exists!' % bpath

        best_pl_module = pl_module.load_from_checkpoint(bpath)
        pl_module.model.load_state_dict(best_pl_module.model.state_dict())
        pl_module.current_epoch = best_pl_module.current_epoch
        pl_module.global_step = best_pl_module.global_step
        print('Load best model from %s' % bpath)

        trainer.callback_metrics = {}
        print('Clean up the callback metrics before test; Remove last val metrics')
Exemplo n.º 10
0
    def handle_args(self, arguments):
        """
        @return a list of command_bundles
        """
        content = []
        for a in arguments:
            if pexists(a):
                content.append(a.decode('utf-8'))
            else:
                paths = myglob(a)
                content.extend([p.decode('utf-8') for p in paths if pexists(p)])

        content.sort()
        if not content:
            print 'No content found'
            return []

        self.commands = []
        for c in content:
            # TODO: Could really do with removing this ...
            self.reset_env()

            try:
                commandset = self.handle_content(c)
                if commandset:
                    self.commands.append(commandset)
            except Exception as e:
                # parsing one arg failed -- proceed with the rest
                print e
                print traceback.format_exc()
                log.error(e)
        return self.commands
Exemplo n.º 11
0
    def test_openbis(self):
        self._send_file("äää  \t({QJFDC066BIblub.RAw")
        expected_name = 'QJFDC066BI_blub.RAw'
        print(os.listdir(self.paths['openbis_raw']))
        assert pexists(pjoin(self.paths['openbis_raw'], expected_name))
        marker = '.MARKER_is_finished_' + expected_name
        assert pexists(pjoin(self.paths['openbis_raw'], marker))

        origname_file = pjoin(
            self.paths['openbis_raw'],
            expected_name,
            expected_name + '.origlabfilename',
        )
        assert pexists(origname_file)
        with open(origname_file, 'r') as f:
            assert f.read() == "äää  \t({QJFDC066BIblub.RAw"

        checksum_file = pjoin(self.paths['openbis_raw'], expected_name,
                              expected_name + '.sha256sum')
        assert pexists(checksum_file)

        source_file = pjoin(self.paths['openbis_raw'], expected_name,
                            "source_dropbox.txt")

        with open(source_file) as f:
            assert f.read() == "incoming1"
Exemplo n.º 12
0
 def test_umask(self):
     self._send_dir('testdir', 'file1')
     outpath = pjoin(self.paths['manual'], 'incoming1', 'testdir')
     assert pexists(outpath)
     assert os.path.isdir(outpath)
     assert pexists(pjoin(outpath, 'testdir', 'file1'))
     assert os.stat(outpath).st_mode & self.umask == 0
Exemplo n.º 13
0
def read_features_and_groups(features_path, groups_path):
    "Reader for data and groups"

    try:
        if not pexists(features_path):
            raise ValueError('non-existent features file')

        if not pexists(groups_path):
            raise ValueError('non-existent groups file')

        if isinstance(features_path, str):
            features = np.genfromtxt(features_path, dtype=float)
        else:
            raise ValueError('features input must be a file path ')

        if isinstance(groups_path, str):
            groups = np.genfromtxt(groups_path, dtype=str)
        else:
            raise ValueError('groups input must be a file path ')

    except:
        raise IOError('error reading the specified features and/or groups.')

    if len(features) != len(groups):
        raise ValueError("lengths of features and groups do not match!")

    return features, groups
Exemplo n.º 14
0
    def run(self, args, infile):

        print("hmm_mapper: run")
        ##
        # Step 1. Sequence search
        self.search(args, infile)

        ##
        # If running in scratch, move files to real output dir and clean up

        if self.scratch_dir:
            scratch_path = pjoin(self.scratch_dir, self.hmm_hits_file)
            if pexists(scratch_path):
                print(" Copying result file %s from scratch to %s" %
                      (scratch_path, self.output_dir))
                shutil.copy(scratch_path, self.output_dir)

            print(
                colorify(
                    f"Data in {self.scratch_dir} will be not removed. Please, clear it manually.",
                    'red'))

        ##
        # Finalize and exit
        print(colorify('Done', 'green'))
        colorify('Result files:', 'yellow')
        output_path = pjoin(self.output_dir, self.hmm_hits_file)
        if pexists(output_path):
            print("   %s" % (output_path))

        return
def raw_clean_bootstrap(pyver):
    bdir = bootstrap_dir(pyver)
    for d in ["build", "dist"]:
        if pexists(pjoin(bdir, d)):
            rmtree(pjoin(bdir, d))

    if pexists(pjoin(bdir, "site.cfg")):
        os.remove(pjoin(bdir, "site.cfg"))
Exemplo n.º 16
0
def raw_clean_bootstrap(pyver):
    bdir = bootstrap_dir(pyver)
    for d in ["build", "dist"]:
        if pexists(pjoin(bdir, d)):
            rmtree(pjoin(bdir, d))

    if pexists(pjoin(bdir, "site.cfg")):
        os.remove(pjoin(bdir, "site.cfg"))
Exemplo n.º 17
0
def fetch_EPSILON(path='./data/', train_size=None, valid_size=None, test_size=None, fold=0):
    path = pjoin(path, 'EPSILON')

    train_path = pjoin(path, 'epsilon_normalized')
    test_path = pjoin(path, 'epsilon_normalized.t')
    if not all(pexists(fname) for fname in (train_path, test_path)):
        os.makedirs(path, exist_ok=True)
        train_archive_path = pjoin(path, 'epsilon_normalized.bz2')
        test_archive_path = pjoin(path, 'epsilon_normalized.t.bz2')
        if not all(pexists(fname) for fname in (train_archive_path, test_archive_path)):
            download("https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/epsilon_normalized.bz2", train_archive_path)
            download("https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/epsilon_normalized.t.bz2", test_archive_path)
        print("unpacking dataset")
        for file_name, archive_name in zip((train_path, test_path), (train_archive_path, test_archive_path)):
            zipfile = bz2.BZ2File(archive_name)
            with open(file_name, 'wb') as f:
                f.write(zipfile.read())

    with Timer("reading dataset (it may take a long time)"):
        X_train, y_train = load_svmlight_file(train_path, dtype=np.float32, n_features=2000)
        X_test, y_test = load_svmlight_file(test_path, dtype=np.float32, n_features=2000)
        X_train, X_test = X_train.toarray(), X_test.toarray()
        y_train, y_test = y_train.astype(np.int), y_test.astype(np.int)
        y_train[y_train == -1] = 0
        y_test[y_test == -1] = 0

    if all(sizes is None for sizes in (train_size, valid_size, test_size)):
        train_idx_path = pjoin(path, 'stratified_train_idx.txt')
        valid_idx_path = pjoin(path, 'stratified_valid_idx.txt')
        if not all(pexists(fname) for fname in (train_idx_path, valid_idx_path)):
            download("https://www.dropbox.com/s/wxgm94gvm6d3xn5/stratified_train_idx.txt?dl=1", train_idx_path)
            download("https://www.dropbox.com/s/fm4llo5uucdglti/stratified_valid_idx.txt?dl=1", valid_idx_path)
        train_idx = pd.read_csv(train_idx_path, header=None)[0].values
        valid_idx = pd.read_csv(valid_idx_path, header=None)[0].values
    else:
        assert train_size, "please provide either train_size or none of sizes"
        if valid_size is None:
            valid_size = len(X_train) - train_size
            assert valid_size > 0
        if train_size + valid_size > len(X_train):
            warnings.warn('train_size + valid_size = {} exceeds dataset size: {}.'.format(
                train_size + valid_size, len(X_train)), Warning)
        if test_size is not None:
            warnings.warn('Test set is fixed for this dataset.', Warning)

        shuffled_indices = np.random.permutation(np.arange(len(X_train)))
        train_idx = shuffled_indices[:train_size]
        valid_idx = shuffled_indices[train_size: train_size + valid_size]

    X_train = pd.DataFrame(X_train)
    X_test = pd.DataFrame(X_test)

    return dict(
        X_train=X_train.iloc[train_idx], y_train=y_train[train_idx],
        X_valid=X_train.iloc[valid_idx], y_valid=y_train[valid_idx],
        X_test=X_test, y_test=y_test,
        problem='classification',
    )
Exemplo n.º 18
0
def analyze():
	''' analyze the data in the data file. '''
	if pexists(pjoin('/root/output', 'box_samples.txt')):
		if pexists(pjoin('/root/output', 'analysis.txt')):
			os.remove(pjoin('/root/output', 'analysis.txt'))
		call(['/root/bin/analyzer.out','/root/output/box_samples.txt','/root/output/analysis.txt'])
		return flask.send_from_directory('/root/output', 'analysis.txt')
	else:
		return flask.Response(404,'box_samples.txt not found or path doesn\'t exist.')
Exemplo n.º 19
0
def fetch_PROTEIN(path='./data/', train_size=None, valid_size=None, test_size=None, fold=0):
    """
    https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#protein
    """
    path = pjoin(path, 'PROTEIN')

    train_path = pjoin(path, 'protein')
    test_path = pjoin(path, 'protein.t')
    if not all(pexists(fname) for fname in (train_path, test_path)):
        os.makedirs(path, exist_ok=True)
        download("https://www.dropbox.com/s/pflp4vftdj3qzbj/protein.tr?dl=1", train_path)
        download("https://www.dropbox.com/s/z7i5n0xdcw57weh/protein.t?dl=1", test_path)
    for fname in (train_path, test_path):
        raw = open(fname).read().replace(' .', '0.')
        with open(fname, 'w') as f:
            f.write(raw)

    X_train, y_train = load_svmlight_file(train_path, dtype=np.float32, n_features=357)
    X_test, y_test = load_svmlight_file(test_path, dtype=np.float32, n_features=357)
    X_train, X_test = X_train.toarray(), X_test.toarray()
    y_train, y_test = y_train.astype(np.int), y_test.astype(np.int)

    if all(sizes is None for sizes in (train_size, valid_size, test_size)):
        train_idx_path = pjoin(path, 'stratified_train_idx.txt')
        valid_idx_path = pjoin(path, 'stratified_valid_idx.txt')
        if not all(pexists(fname) for fname in (train_idx_path, valid_idx_path)):
            download("https://www.dropbox.com/s/wq2v9hl1wxfufs3/small_stratified_train_idx.txt?dl=1", train_idx_path)
            download("https://www.dropbox.com/s/7o9el8pp1bvyy22/small_stratified_valid_idx.txt?dl=1", valid_idx_path)
        train_idx = pd.read_csv(train_idx_path, header=None)[0].values
        valid_idx = pd.read_csv(valid_idx_path, header=None)[0].values
    else:
        assert train_size, "please provide either train_size or none of sizes"
        if valid_size is None:
            valid_size = len(X_train) - train_size
            assert valid_size > 0
        if train_size + valid_size > len(X_train):
            warnings.warn('train_size + valid_size = {} exceeds dataset size: {}.'.format(
                train_size + valid_size, len(X_train)), Warning)
        if test_size is not None:
            warnings.warn('Test set is fixed for this dataset.', Warning)

        shuffled_indices = np.random.permutation(np.arange(len(X_train)))
        train_idx = shuffled_indices[:train_size]
        valid_idx = shuffled_indices[train_size: train_size + valid_size]

    X_train = pd.DataFrame(X_train)
    X_test = pd.DataFrame(X_test)

    return dict(
        X_train=X_train.iloc[train_idx], y_train=y_train[train_idx],
        X_valid=X_train.iloc[valid_idx], y_valid=y_train[valid_idx],
        X_test=X_test, y_test=y_test
    )
Exemplo n.º 20
0
 def __init__(self, remote_config_path, ctx):
     # Required for providers registration :
     from pcs_api.providers import (dropbox, googledrive)
     #
     from pcs_api.credentials.app_info_file_repo \
         import AppInfoFileRepository
     from pcs_api.credentials.user_creds_file_repo \
         import UserCredentialsFileRepository
     from pcs_api.credentials.user_credentials import UserCredentials
     from pcs_api.storage import StorageFacade
     ctx.logger.info("Setting up cloud storage app")
     app_info_path = pjoin(remote_config_path, "app_info_data.txt")
     user_credentials_path = pjoin(remote_config_path,
                                   "user_credentials_data.txt")
     if not pexists(remote_config_path):
         msg = 'No remote named ' + os.path.split(remote_config_path)[1]
         ctx.logger.critical(msg)
         msg = "Run 'hit remote add ...'"
         ctx.logger.critical(msg)
         exit(1)
     if not pexists(app_info_path):
         msg = 'No remote application information: ' \
               + repr(app_info_path)
         ctx.logger.critical(msg)
         msg = "Run 'hit remote add ...'"
         ctx.logger.critical(msg)
         exit(1)
     apps_repo = AppInfoFileRepository(app_info_path)
     if not pexists(user_credentials_path):
         msg = 'No user credentials found: ' \
             + repr(user_credentials_path)
         ctx.logger.critical(msg)
         msg = "Run 'hit remote add ...'"
         ctx.logger.critical(msg)
         exit(1)
     user_credentials_repo = UserCredentialsFileRepository(
         user_credentials_path)
     provider_name = apps_repo._app_info.keys()[0].split(".")[0]
     app_info = apps_repo.get(provider_name)
     user_info = user_credentials_repo.get(app_info)
     self.storage = StorageFacade \
         .for_provider(provider_name) \
         .app_info_repository(apps_repo, app_info.app_name) \
         .user_credentials_repository(user_credentials_repo,
                                      user_info.user_id) \
         .build()
     msg = "Cloud storage user_id = " + repr(self.storage.get_user_id())
     ctx.logger.info(msg)
     msg = "Cloud storage quota = " + repr(self.storage.get_quota())
     ctx.logger.info(msg)
     ctx.logger.info("Cloud storage is  ready")
     self.ctx = ctx
Exemplo n.º 21
0
def link_contents(content_path, linkdir_path):
    content_realpath = realpath(content_path)
    for fn in os.listdir(content_realpath):
        f_realpath = pjoin(content_realpath, fn)
        f_sympath = pjoin(linkdir_path, fn)

        if not pexists(f_sympath):
            os.symlink(f_realpath, f_sympath)
        elif pexists(f_sympath) and not sym_sametarget(f_sympath, f_realpath):
            print_advice_on_duplicates([realpath(f_sympath), realpath(f_realpath)])
        else:
            # symlink exists, but points to same location.
            pass
Exemplo n.º 22
0
def raw_clean(src_dir, pyver):
    # Clean sdist
    sdir = pjoin(src_dir, "dist")
    if pexists(sdir):
        rmtree(sdir)
    mani = pjoin(src_dir, "MANIFEST")
    if pexists(mani):
        os.remove(mani)

    # Clean bootstrap directory
    bdir = bootstrap_dir(pyver)
    if pexists(bdir):
        rmtree(bdir)
def raw_clean(src_dir, pyver):
    # Clean sdist
    sdir = pjoin(src_dir, "dist")
    if pexists(sdir):
        rmtree(sdir)
    mani = pjoin(src_dir, "MANIFEST")
    if pexists(mani):
        os.remove(mani)

    # Clean bootstrap directory
    bdir = bootstrap_dir(pyver)
    if pexists(bdir):
        rmtree(bdir)
Exemplo n.º 24
0
    def run(self, args, infile, annotate_hits_table=None, cache_dir=None):

        ##
        # Step 0. Gene prediction
        predictor = self.gene_prediction(args, infile)

        ##
        # Step 1. Sequence search
        searcher = self.search(args, infile, predictor)

        ##
        # Step 2. Annotation
        annotator = self.annotate(args, searcher, annotate_hits_table,
                                  cache_dir)

        ##
        # Decorate GFF
        self.decorate_gff_f(predictor, searcher, annotator)

        ##
        # Clear things
        if predictor is not None:
            shutil.move(predictor.outprots,
                        pjoin(self._current_dir, self.genepred_fasta_file))
            predictor.clear()  # removes gene predictor output directory

        ##
        # If running in scratch, move files to real output dir and clean up
        if self.scratch_dir:
            for fname in self._output_files:
                pathname = pjoin(self.scratch_dir, fname)
                if pexists(pathname):
                    print(" Copying result file %s from scratch to %s" %
                          (pathname, self.output_dir))
                    shutil.copy(pathname, self.output_dir)

            print(
                colorify(
                    f"Data in {self.scratch_dir} will be not removed. Please, clear it manually.",
                    'red'))

        ##
        # Finalize and exit
        print(colorify('Done', 'green'))
        for fname in self._output_files:
            pathname = pjoin(self.output_dir, fname)
            colorify('Result files:', 'yellow')
            if pexists(pathname):
                print("   %s" % (pathname))

        return
Exemplo n.º 25
0
    def on_train_end(self, trainer, pl_module):
        result_f = pjoin(pl_module.hparams.logdir, pl_module.hparams.name,
                         'results.tsv')
        assert pexists(result_f), 'Result %s should exists!' % result_f

        df = pd.read_csv(result_f, delimiter='\t')

        func = {'min': np.argmin, 'max': np.argmax}[
            trainer.checkpoint_callback.mode]
        best_idx = int(func(df[trainer.checkpoint_callback.monitor].values))

        best_metric = df.iloc[best_idx].to_dict()

        csv_dict = OrderedDict()
        csv_dict['name'] = pl_module.hparams.name
        csv_dict.update(best_metric)
        csv_dict.update(
            vars(pl_module.hparams) if isinstance(pl_module.hparams, Namespace)
            else pl_module.hparams)

        postfix = '_test' if pl_module.hparams.test_run else ''
        dr_exp = ''
        if pl_module.is_data_ratio_exp():
            dr_exp += 'dr_'
        if pl_module.is_bbox_noise_exp():
            dr_exp += 'bn_'
        fname = pjoin(pl_module.hparams.result_dir,
                      f'{pl_module.__class__.__name__}_{dr_exp}results{postfix}.tsv')

        # Check if already exists
        if not pexists(fname):
            output_csv(fname, csv_dict, delimiter='\t')
        else:
            try:
                tmp_df = pd.read_csv(fname, delimiter='\t')
                if pl_module.hparams.name not in set(tmp_df['name']):
                    output_csv(fname, csv_dict, delimiter='\t')
            except:
                # Avoid reading CSV error
                output_csv(fname, csv_dict, delimiter='\t')

        bpath = pjoin(pl_module.hparams.logdir, pl_module.hparams.name, 'best.ckpt')
        if pexists(bpath):
            return

        if os.path.islink(bpath):
            os.unlink(bpath)

        best_filename = trainer.checkpoint_callback.format_checkpoint_name(
            best_metric['epoch'], dict(gstep=best_metric['global_step']))
        os.symlink(best_filename, bpath)
Exemplo n.º 26
0
    def annotate(self, args, hits, annotate_hits_table, queries_file,
                 cache_file):
        annotated_hits = None

        if self.annot == True or self.report_orthologs:

            if cache_file is not None:
                if not pexists(cache_file):
                    raise EmaperException(
                        f"Could not find cache file: {cache_file}")

                annotator = get_cache_annotator(args)

                if annotator is not None:
                    annotated_hits = annotator.annotate(
                        cache_file, pjoin(self._current_dir, self.annot_file),
                        pjoin(self._current_dir, self.no_annot_file))
            else:

                annot_in = None  # a generator of hits to annotate

                if annotate_hits_table is not None:
                    if not pexists(annotate_hits_table):
                        raise EmapperException(
                            f"Could not find the file with the hits "
                            f"table to annotate: {annotate_hits_table}")

                    # function which parses the file and yields hits
                    annot_in = parse_seeds(annotate_hits_table)

                elif hits is not None:
                    annot_in = hits

                else:
                    raise EmapperException("Could not find hits to annotate.")

                annotator = get_annotator(args, self.annot, self.excel,
                                          self.report_orthologs)

                if annot_in is not None and annotator is not None:
                    annotated_hits = annotator.annotate(
                        annot_in, pjoin(self._current_dir, self.annot_file),
                        pjoin(self._current_dir, self.excel_file),
                        pjoin(self._current_dir, self.orthologs_file),
                        pjoin(self._current_dir, self.pfam_file), queries_file)
        else:
            annotated_hits = ((hit, None) for hit in hits
                              )  # hits generator without annotations

        return annotated_hits
Exemplo n.º 27
0
def test_vis():
    " ensures the CLI works. "

    res_path = pjoin(out_dir, 'rhst_results.pkl')
    if pexists(res_path):
        with raises(SystemExit):
            sys.argv = shlex.split('neuropredict --make_vis {}'.format(out_dir))
            cli()
            expected_results = ['balanced_accuracy.pdf', 'compare_misclf_rates.pdf', 'feature_importance.pdf']
            for rpath in expected_results:
                if not pexists(rpath):
                    raise ValueError('an expected result {} not produced'.format(rpath))
    else:
        print('previously computed results not found in \n {}'.format(out_dir))
Exemplo n.º 28
0
 def test_manual(self):
     self._send_file('dataaä .txt')
     assert pexists(pjoin(self.paths['manual'], 'incoming1', 'dataa.txt'))
     assert pexists(
         pjoin(self.paths['manual'], 'incoming1', 'dataa.txt',
               'dataa.txt.sha256sum'))
     with open(
             pjoin(self.paths['manual'], 'incoming1', 'dataa.txt',
                   'dataa.txt.sha256sum')) as f:
         assert 'dataa.txt' in f.read()
     origfile = pjoin(self.paths['manual'], 'incoming1', 'dataa.txt',
                      'dataa.txt.origlabfilename')
     with open(origfile) as f:
         assert f.read() == 'dataaä .txt'
Exemplo n.º 29
0
def fetch_HIGGS(path='./data/', train_size=None, valid_size=None, test_size=5 * 10 ** 5, fold=0):
    path = pjoin(path, 'HIGGS')

    data_path = pjoin(path, 'higgs.csv')
    if not pexists(data_path):
        os.makedirs(path, exist_ok=True)
        archive_path = pjoin(path, 'HIGGS.csv.gz')
        download('https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz', archive_path)
        with gzip.open(archive_path, 'rb') as f_in:
            with open(data_path, 'wb') as f_out:
                shutil.copyfileobj(f_in, f_out)
    n_features = 29
    types = {i: (np.float32 if i != 0 else np.int) for i in range(n_features)}
    data = pd.read_csv(data_path, header=None, dtype=types)
    data_train, data_test = data.iloc[:-test_size], data.iloc[-test_size:]

    X_train, y_train = data_train.iloc[:, 1:].values, data_train.iloc[:, 0].values
    X_test, y_test = data_test.iloc[:, 1:].values, data_test.iloc[:, 0].values

    if all(sizes is None for sizes in (train_size, valid_size)):
        train_idx_path = pjoin(path, 'stratified_train_idx.txt')
        valid_idx_path = pjoin(path, 'stratified_valid_idx.txt')
        if not all(pexists(fname) for fname in (train_idx_path, valid_idx_path)):
            download("https://www.dropbox.com/s/i2uekmwqnp9r4ix/stratified_train_idx.txt?dl=1", train_idx_path)
            download("https://www.dropbox.com/s/wkbk74orytmb2su/stratified_valid_idx.txt?dl=1", valid_idx_path)
        train_idx = pd.read_csv(train_idx_path, header=None)[0].values
        valid_idx = pd.read_csv(valid_idx_path, header=None)[0].values
    else:
        assert train_size, "please provide either train_size or none of sizes"
        if valid_size is None:
            valid_size = len(X_train) - train_size
            assert valid_size > 0
        if train_size + valid_size > len(X_train):
            warnings.warn('train_size + valid_size = {} exceeds dataset size: {}.'.format(
                train_size + valid_size, len(X_train)), Warning)

        shuffled_indices = np.random.permutation(np.arange(len(X_train)))
        train_idx = shuffled_indices[:train_size]
        valid_idx = shuffled_indices[train_size: train_size + valid_size]

    X_train = pd.DataFrame(X_train)
    X_test = pd.DataFrame(X_test)
    return dict(
        X_train=X_train.iloc[train_idx], y_train=y_train[train_idx],
        X_valid=X_train.iloc[valid_idx], y_valid=y_train[valid_idx],
        X_test=X_test, y_test=y_test,
        problem='classification',
    )
Exemplo n.º 30
0
def import_features(fs_dir,
                    subject_list,
                    base_feature= 'freesurfer_thickness',
                    fwhm=10,
                    atlas='fsaverage'):
    "Ensure subjects are provided and their data exist."

    if isinstance(subject_list, collections.Iterable):
        if len(subject_list) < 1:
            raise ValueError('Empty subject list.')
        subjects_list = subject_list
    elif isinstance(subject_list, str):
        if not pexists(subject_list):
            raise IOError('path to subject list does not exist: {}'.format(subject_list))
        subjects_list = np.atleast_1d(np.genfromtxt(subject_list, dtype=str).astype(str))
    else:
        raise ValueError('Invalid value provided for subject list. \n '
                         'Must be a list of paths, or path to file containing list of paths, one for each subject.')

    features= dict()
    for subject_id in subjects_list:
        try:
            print('Reading {} for {} ... '.format(base_feature, subject_id), end='')
            features[subject_id] = get_data(fs_dir, subject_id, base_feature, fwhm, atlas)
            print(' Done.')
        except:
            traceback.print_exc()
            raise ValueError('{} data for {} could not be read!'.format(base_feature, subject_id))

    return features
Exemplo n.º 31
0
    def controls(self):
        debug(self._label + "control files")
        package = self._package
        suffix_normal = [".conf", ".conffiles", ".mime", ".service"]
        suffix_script = [".init", ".preinst", ".postinst", ".prerm", ".postrm"]
        dest_base = pjoin(self._env["QPKG_DEST_DATA"], ".qdk2")
        makedirs(dest_base)
        for suffix in suffix_normal + suffix_script:
            src = pjoin(Settings.CONTROL_PATH, package["package"] + suffix)
            dest = pjoin(dest_base, package["package"] + suffix)
            if not pexists(src):
                continue
            if suffix in (".init",):
                dest = pjoin(self._env["QPKG_DEST_DATA"], package["package"] + suffix)

            # copy to destination and replace template variables
            tpl_vars = [("%" + k + "%", v) for k, v in self._env.iteritems() if k.startswith("QPKG_")]
            with open(src, "r") as fin, open(dest, "w+") as fout:
                for line in fin:
                    for k, v in tpl_vars:
                        line = line.replace(k, v)
                    fout.write(line)
            if suffix in suffix_script:
                chmod(dest, 0755)
            else:
                chmod(dest, 0644)
Exemplo n.º 32
0
def make_predictions(model_name, X):
    saved_dir = pjoin('logs', model_name)
    hparams = json.load(open(pjoin(saved_dir, 'hparams.json')))

    assert pexists(pjoin(saved_dir,
                         'checkpoint_best.pth')), 'No best ckpt exists!'
    model = load_best_model_from_trained_dir(saved_dir)
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model.to(device)

    pp = pickle.load(open(pjoin(saved_dir, 'preprocessor.pkl'), 'rb'))

    X = pp.transform(X)
    X = torch.as_tensor(X, device=device)
    with torch.no_grad():
        logits = process_in_chunks(model,
                                   X,
                                   batch_size=2 * hparams['batch_size'])
        logits = check_numpy(logits)

    ret = logits
    if len(logits.shape) == 2 and logits.shape[1] == 2:
        ret = logits[:, 1] - logits[:, 0]
    elif len(logits.shape) == 1:  # regression or binary cls
        if pp.y_mu is not None and pp.y_std is not None:
            ret = (ret * pp.y_std) + pp.y_mu
    return ret
Exemplo n.º 33
0
    def restore_ratings(self):
        """Method to restore ratings from previous sessions, if any."""

        print('Restoring ratings from previous session(s), if they exist ..')

        # making a copy
        self.incomplete_list = list(self.id_list)
        prev_done = []  # empty list

        ratings_file, backup_name_ratings = get_ratings_path_info(self)

        if pexists(ratings_file):
            self.ratings, self.notes = load_ratings_csv(ratings_file)
            # finding the remaining
            prev_done = set(self.ratings.keys())
            self.incomplete_list = list(set(self.id_list) - prev_done)
        else:
            self.ratings = dict()
            self.notes = dict()

        if len(prev_done) > 0:
            print('\nRatings for {}/{} subjects were restored.'
                  ''.format(len(prev_done), len(self.id_list)))

        if len(self.incomplete_list) < 1:
            print('No subjects to review/rate - exiting.')
            sys.exit(0)
        else:
            self.num_units_to_review = len(self.incomplete_list)
            print('To be reviewed : {}\n'.format(self.num_units_to_review))
Exemplo n.º 34
0
    def save_ratings(self):
        """Saves ratings to disk """

        print('Saving ratings .. \n')
        ratings_file, prev_ratings_backup = get_ratings_path_info(self)

        if pexists(ratings_file):
            copyfile(ratings_file, prev_ratings_backup)

        # add column names: subject_id,issue1:issue2:issue3,...,notes etc
        # TODO add path(s) to data (images etc) that produced the review
        lines = '\n'.join([
            '{},{},{}'.format(sid, self._join_ratings(rating_set),
                              self.notes[sid])
            for sid, rating_set in self.ratings.items()
        ])
        try:
            with open(ratings_file, 'w') as cf:
                cf.write(lines)
        except:
            raise IOError('Error in saving ratings to file!!\n'
                          'Backup might be helpful at:\n\t{}'.format(
                              prev_ratings_backup))

        # summarize ratings to stdout and id lists
        summarize_ratings(ratings_file)
Exemplo n.º 35
0
def load_hparams(the_dir):
    if pexists(pjoin(the_dir, 'hparams.json')):
        hparams = json.load(open(pjoin(the_dir, 'hparams.json')))
    else:
        name = os.path.basename(the_dir)
        if not pexists(pjoin('logs', 'hparams', name)):
            cmd = 'rsync -avzL v:/h/kingsley/node/logs/hparams/%s ./logs/hparams/' % (
                name)
            print(cmd)
            os.system(cmd)

        if pexists(pjoin('logs', 'hparams', name)):
            hparams = json.load(open(pjoin('logs', 'hparams', name)))
        else:
            raise RuntimeError('No hparams exist: %s' % the_dir)
    return hparams
Exemplo n.º 36
0
    def run(self):
        if self.qpkg_dir is None:
            error('Cannot find QNAP/control anywhere!')
            error('Are you in the source code tree?')
            return -1

        if self._args.filename is None:
            self._args.filename = 'control'

        cfiles = self._get_support_control_files()

        if self._args.filename not in cfiles:
            error('Support control files: {}'.format(', '.join(cfiles)))
            return -1

        filename = pjoin(self.qpkg_dir, Settings.CONTROL_PATH,
                         self._args.filename)

        editor = Editor()
        if not pexists(filename):
            editor.set_template_file(
                pjoin(Settings.TEMPLATE_PATH, Settings.CONTROL_PATH,
                      '{}{}'.format(Settings.DEFAULT_PACKAGE,
                                    filename[filename.rfind('.'):])))
        editor.open(filename)
        return 0
Exemplo n.º 37
0
    def _setup_all(self, control):
        cwd = getcwd()
        dest = prealpath(pjoin(self.build_dir, control.source['source']))
        if pexists(dest):
            rmtree(dest)
        if not pexists(self.build_dir):
            makedirs(self.build_dir)
        # if dest in qpkg_dir
        copytree(self.qpkg_dir, dest, True)
        self.source = control.source
        chdir(dest)

        yield None

        chdir(cwd)
        del self.source
Exemplo n.º 38
0
def extract_GAM_from_baselines(saved_dir, max_n_bins=256, **kwargs):
    from .data import DATASETS
    model = pickle.load(open(pjoin(saved_dir, 'model.pkl'), 'rb'))

    hparams = load_hparams(saved_dir)

    pp = None
    if pexists(pjoin(saved_dir, 'preprocessor.pkl')):
        pp = pickle.load(open(pjoin(saved_dir, 'preprocessor.pkl'), 'rb'))

    dataset = DATASETS[hparams['dataset'].upper()](path='./data/')
    all_X = pd.concat([dataset['X_train'], dataset['X_test']], axis=0)

    def predict_fn(X):
        if isinstance(X, np.ndarray):
            X = pd.DataFrame(X, columns=all_X.columns)

        if pp is not None:
            X = pp.transform(X)

        if dataset['problem'] == 'classification':
            prob = model.predict_proba(X)
            return prob[:, 1]
        return model.predict(X)

    predict_type = 'binary_prob' \
        if dataset['problem'] == 'classification' else 'regression'
    df = extract_GAM(all_X,
                     predict_fn,
                     max_n_bins=max_n_bins,
                     predict_type=predict_type)
    return df
Exemplo n.º 39
0
def load_results(results_file_path):
    "Loads the results serialized by RHsT."
    # TODO need to standardize what needs to saved/read back

    if not pexists(results_file_path):
        raise IOError("Results file to be loaded doesn't exist!")

    try:
        with open(results_file_path, 'rb') as rf:
            results_dict = pickle.load(rf)
            # # below is possible, but not explicit and a bad practice
            # # importing the keys and their values into the workspace
            # locals().update(results_dict)

            dataset_paths, method_names, train_perc, num_repetitions, num_classes, \
            pred_prob_per_class, pred_labels_per_rep_fs, test_labels_per_rep, \
            best_params, feature_importances_rf, \
            feature_names, num_times_misclfd, num_times_tested, \
            confusion_matrix, class_set, target_sizes, accuracy_balanced, \
            auc_weighted, positive_class, classifier_name, feat_select_method = \
                [results_dict.get(var_name)
                 for var_name in cfg.rhst_data_variables_to_persist]

    except:
        raise IOError('Error loading the saved results from \n{}'
                      ''.format(results_file_path))

    # TODO need a consolidated way to identify the variables saved their order
    return dataset_paths, method_names, train_perc, num_repetitions, num_classes, \
           pred_prob_per_class, pred_labels_per_rep_fs, test_labels_per_rep, \
           best_params, feature_importances_rf, feature_names, \
           num_times_misclfd, num_times_tested, \
           confusion_matrix, class_set, target_sizes, \
           accuracy_balanced, auc_weighted, positive_class, \
           classifier_name, feat_select_method
Exemplo n.º 40
0
    def run(self):
        if not pexists(self.directory):
            makedirs(self.directory)
        else:
            if isdir(self.directory):
                if listdir(self.directory):
                    error('Directory is not empty: ' + self.directory)
                    return -1
            else:
                error('This is not directory: ' + self.directory)
                return -1

        try:
            src_type, src_value = self.probe_source_type()
            if self.import_source(src_type, src_value) != 0:
                error('Import failed')

            if pexists(pjoin(self._directory, Settings.CONTROL_PATH)):
                info('{} folder exists!'.format(Settings.CONTROL_PATH))
                return 0

            # copy template control files
            info('Copy default CONTROL files to {}'.format(
                pjoin(self.directory, Settings.CONTROL_PATH)))
            copytree(pjoin(Settings.TEMPLATE_PATH, Settings.CONTROL_PATH),
                     pjoin(self.directory, Settings.CONTROL_PATH), True)

            info('Modify package name to ' + self._args.project)
            # sed control, rules, *.init, *.conf
            files_check = ('control', 'rules', 'foobar.init', 'foobar.conf')
            for fn in files_check:
                fp = pjoin(self.directory, Settings.CONTROL_PATH, fn)
                for line in fileinput.input(fp, inplace=True):
                    print line.replace(Settings.DEFAULT_PACKAGE,
                                       self._args.project),

            # mv foobar.* to self._args.project.*
            for fn in glob(pjoin(self.directory, Settings.CONTROL_PATH,
                                 Settings.DEFAULT_PACKAGE + '.*')):
                dest = pjoin(pdirname(fn),
                             self._args.project + fn[fn.index('.'):])
                move(fn, dest)
        except Exception as e:
            error(e)
            return -1
        return 0
Exemplo n.º 41
0
def write_default_config():
    confdir = expanduser('~/.retorrent')
    skelfile = '/usr/share/retorrent/' + config_filename + '_skel'

    if pexists(skelfile):
        if not pexists(pjoin(confdir, config_filename + '_skel')):
            print('Creating a skeleton $HOME/.retorrent/retorrent.conf, ' +
                  'please configure it to your system')
            mkdir_p(confdir)
            shutil.copyfile('/usr/share/retorrent/retorrent.conf_skel',
                            expanduser('~/.retorrent/retorrent.conf_skel'))
        else:
            print('Please configure the retorrent.conf_skel in ${HOME}/.retorrent ' +
                  'and rename it to ' + config_filename)
    else:
        print('Cannot find ' + config_filename + ' or a valid skeleton ' + config_filename + '.')
        print('Please create and configure %s or check your installation. ' %
              (pjoin(confdir, config_filename)))
Exemplo n.º 42
0
def metatranscriptomics(opts):
    """Performs analyse of metagenomic data.

        For more information please refer to
        run_fastq_to_fasta(), run_rapsearch() run_ko_map(), run_SARTools(),
        run_pre_ko_remap(), run_ko_remap(), run_new_ko_remap(), run_ko_csv().
    """
    assert opts.out_dir!='in_situ'
    before_cwd = getcwd()
    tmp_dir = pjoin(opts.out_dir, '.meta_tmp_results')
    if not pexists(tmp_dir) or not opts.e:
        system('mkdir ' + tmp_dir)
    chdir(tmp_dir)
    for i in ('template_script_DESeq2.r','template_script_edgeR.r'):
        system('cp '+pjoin(dirname(realpath(__file__)),i)+' .')
    ref_cond, all_conds, fastqs = config_from_file(opts.metatr_config)
    progress('configuration file reading', 15)
    if (len(fastqs) > len(glob('*_R[12]_*.fasta'))) or not opts.e:
        run_fastq_to_fasta(fastqs)
    progress('fastq_to_fasta', 25)
    if (len(fastqs)/2 > len(glob('*.tmp.fasta'))) or not opts.e:
        run_cat_pairing()
    progress('cat', 35)
    if (len(fastqs)/2 > len(glob('*.txt.m8'))) or not opts.e:
        run_rapsearch(opts.threads)
    progress('rapsearch', 45)
    if (len(fastqs)/2 > len(glob('*.count'))) or not opts.e:
        run_ko_map()
    progress('KO mapping', 55)
    if ('edger' not in glob('*')) or not opts.e:
        system('mkdir deseq edger')
        run_SARTools()
    progress('SARTools', 65)
    path_names, kopath_keys, kopath_values, edger_files, deseq_files = \
     run_pre_ko_remap()
    if opts.metatr_output_type != 'new':
        if (len(all_conds)*(len(all_conds)-1) > len(glob('*.path_counts.csv'))\
         or not opts.e):
            run_ko_remap(deseq_files, edger_files, kopath_values, path_names)
    if opts.metatr_output_type != 'old':
        if ('edger.csv' not in glob('*')) or not opts.e:
            ko_dict_deseq, ko_dict_edger = run_new_ko_remap(
             deseq_files, edger_files, kopath_values, all_conds, ref_cond)
            progress('pathway mapping', 75)
            run_ko_csv(ko_dict_deseq, ko_dict_edger, all_conds, kopath_keys,
             path_names, ref_cond)
    progress('generating summative CSV', 85)
    if opts.metatr_output_type != 'new':
        old_path = opts.out_dir + '/old'
        system('mkdir ' + old_path)
        system('cp *path_counts.csv ' + old_path)
    if opts.metatr_output_type != 'old':
        system('cp deseq.csv edger.csv ' + opts.out_dir)
    system('cp edger/_report.html ' + opts.out_dir + '/edger_report.html')
    system('cp deseq/_report.html ' + opts.out_dir + '/deseq_report.html')
    chdir(before_cwd)
    progress('METATRANSCRIPTOMIC WORKFLOW', 95)
Exemplo n.º 43
0
 def prepare_dest():
     dest = prealpath(pjoin(
         '.', Settings.CONTROL_PATH,
         package['package'] + '_' + package['architecture']))
     if pexists(dest):
         rmtree(dest)
     self._env['QPKG_DEST_CONTROL'] = dest
     self._env['QPKG_DEST_DATA'] = pjoin(dest, 'shared')
     makedirs(self._env['QPKG_DEST_DATA'])
Exemplo n.º 44
0
 def dirs(self):
     debug(self._label + "create directories")
     src_install = pjoin(Settings.CONTROL_PATH, self._package["package"] + ".dirs")
     if not pexists(src_install):
         return
     try:
         lineno = 0
         with open(src_install) as fin:
             for line in fin:
                 lineno += 1
                 line = line.strip()
                 if line.startswith("/"):
                     raise FileSyntaxError(src_install, lineno, line)
                 dst = pjoin(self._env["QPKG_DEST_DATA"], line)
                 if not pexists(dst):
                     makedirs(dst)
     except ValueError:
         raise FileSyntaxError(src_install, lineno, line)
Exemplo n.º 45
0
 def test_tar_out(self):
     image = pjoin(self.tmpdir, 'image.img')
     data = self._prepare_data()
     prepare_data_image(image, data, size="20M")
     outdir = pjoin(self.tmpdir, 'outdir')
     os.mkdir(outdir)
     outfile = pjoin(outdir, "out.tar")
     extract_from_image(image, outfile, path='/', use_tar=True)
     assert pexists(outfile)
Exemplo n.º 46
0
 def qpkg_dir(self):
     if not hasattr(self, '_qpkg_dir'):
         cwd = os.getcwd()
         while cwd != '/':
             if pexists(pjoin(cwd, Settings.CONTROL_PATH, 'control')):
                 break
             cwd = pabspath(pjoin(cwd, os.pardir))
         self._qpkg_dir = cwd if cwd != '/' else None
     return self._qpkg_dir
Exemplo n.º 47
0
    def format_qdk2(self):
        info('Create CONTROL at {}'.format(self.directory))
        if pexists(pjoin(self.directory, Settings.CONTROL_PATH)):
            yn = raw_input('{} folder exists! Delete? [Y/n] '.format(
                           pjoin(self.directory, Settings.CONTROL_PATH)))
            if len(yn) and yn[0].lower() == 'n':
                raise UserExit()
            rmtree(pjoin(self.directory, Settings.CONTROL_PATH))
        if not pexists(self.directory):
            makedirs(self.directory)

        # copy template control files
        info('Copy default CONTROL files to {}'.format(
            pjoin(self.directory, Settings.CONTROL_PATH)))
        copytree(pjoin(Settings.TEMPLATE_PATH, Settings.CONTROL_PATH),
                 pjoin(self.directory, Settings.CONTROL_PATH), True)

        self.rename_ctrl_files()
Exemplo n.º 48
0
 def parse(self):
     TITLE, MSG, AUTHOR = range(3)
     if self._parsed:
         return
     self._parsed = True
     if not pexists(self._filename):
         return
     try:
         fp = open(self._filename, 'r')
         block_type = TITLE
         log = {}
         for line in fp:
             self._lineno += 1
             line = line.rstrip()
             # empty line
             if len(line.strip()) == 0:
                 continue
             # message line
             if line.startswith('  '):
                 if block_type != MSG:
                     raise ChangelogFileSyntaxError(
                         self._filename, self._lineno,
                         'This line expects as log message. Message lines '
                         'must start with 2 spaces')
                 log = self._append_message(log, line)
                 continue
             # author
             if line.startswith(' '):
                 if block_type != MSG:
                     raise ChangelogFileSyntaxError(
                         self._filename, self._lineno,
                         'It must have any log message')
                 self._append_author(log, line)
                 block_type = TITLE
                 log.clear()
                 continue
             # new log
             if line[0] != ' ':
                 if block_type != TITLE:
                     raise ChangelogFileSyntaxError(
                         self._filename, self._lineno,
                         'This line must start with package name')
                 log = self._new_log(line)
                 block_type = MSG
                 continue
             raise ChangelogFileSyntaxError(
                 self._filename, self._lineno,
                 'This line must start with package name')
         if len(log) != 0:
             raise ChangelogFileSyntaxError(
                 self._filename, self._lineno,
                 'Unfinished block')
     except OSError:
         pass
     finally:
         fp.close()
Exemplo n.º 49
0
 def extract_qpkg(self, package, to):
     extractor = Settings.QBUILD
     check_call([extractor, '--extract', package, to])
     if not pexists(pjoin(to, 'shared')):
         makedirs(pjoin(to, 'shared'))
     data = glob(pjoin(to, 'data.*'))[0]
     try:
         check_call(['tar', 'xvf', data, '-C', pjoin(to, 'shared')])
     except CalledProcessError as e:
         warning('Error in extracting: {}'.format(e))
Exemplo n.º 50
0
def write_site_cfg(arch, cwd=None):
    if not cwd:
        cwd = os.getcwd()

    scfg = pjoin(cwd, "site.cfg")
    if pexists(scfg):
        os.remove(scfg)
    f = open(scfg, 'w')
    f.writelines(SITECFG[arch])
    f.close()
Exemplo n.º 51
0
    def run(ctx, args):
        for path in [DEFAULT_STORE_DIR, DEFAULT_CONFIG_FILENAME]:
            if pexists(path):
                ctx.logger.error('%s already exists, aborting\n' % path)
                return 2

        for path in DEFAULT_CONFIG_DIRS:
            os.makedirs(pjoin(DEFAULT_STORE_DIR, path))
            sys.stdout.write('Directory %s created.\n' % path)
        shutil.copyfile(get_config_example_filename(), DEFAULT_CONFIG_FILENAME)
        sys.stdout.write('Default configuration file %s written.\n' % DEFAULT_CONFIG_FILENAME)
Exemplo n.º 52
0
 def prepare_env():
     myenv = os.environ.copy()
     for k, v in self.package.iteritems():
         myenv['QPKG_' + k.upper().replace('-', '_')] = v
     for k, v in self.source.iteritems():
         myenv['QPKG_' + k.upper().replace('-', '_')] = v
     myenv['QPKG_VERSION'] = ChangelogFile().version
     if pexists(pjoin(Settings.CONTROL_PATH,
                      package['package'] + '.init')):
         myenv['QPKG_INIT'] = package['package'] + '.init'
     self._env = myenv
Exemplo n.º 53
0
    def _prepare(self):
        self._klen = 0
        for k in self.cfile.source.iterkeys():
            _klen = len('QPKG_') + len(k)
            self._klen = self._klen if self._klen > _klen else _klen

        for k in self.cfile.packages.iterkeys():
            self._klen = self._klen if self._klen > len(k) else len(k)

            initfile = self.cfile.packages[k]['package'] + '.init'
            if pexists(pjoin(self.qpkg_dir, Settings.CONTROL_PATH, initfile)):
                self.cfile.packages[k]['init'] = initfile

            config = self.cfile.packages[k]['package'] + '.conf'
            if pexists(pjoin(self.qpkg_dir, Settings.CONTROL_PATH, config)):
                self.cfile.packages[k]['config'] = config

        if self._args.show_env:
            for k in sorted(os.environ):
                self._klen = self._klen if self._klen > len(k) else len(k)
Exemplo n.º 54
0
    def run(ctx, args):
        store_dir = os.path.expanduser('~/.hashdist')
        for x in [DEFAULT_CONFIG_FILENAME, store_dir]:
            if pexists(x):
                ctx.logger.error('%s already exists, aborting\n' % x)
                return 2

        for x in ['ba', 'bld', 'src', 'db', 'cache', 'gcroots']:
            os.makedirs(pjoin(store_dir, x))
        sys.stdout.write('Directory %s created.\n' % store_dir)
        shutil.copyfile(get_config_example_filename(), DEFAULT_CONFIG_FILENAME)
        sys.stdout.write('Default configuration file %s written.\n' % DEFAULT_CONFIG_FILENAME)
Exemplo n.º 55
0
def same_volume(orig_paths, proposed_path):
    pp = proposed_path

    # Should only be one loop
    #    (eg. video/tv/foo -> video/tv)
    while not pexists(pp):
        pp = dirname(pp)
    prop_dev = device_number(pp)

    for p in orig_paths:
        if not prop_dev == device_number(p):
            return False
    return True
Exemplo n.º 56
0
    def decompress(self, filename, directory, ftype='tarball', strip=0):
        if not pexists(directory):
            makedirs(directory)

        if ftype == 'tarball':
            cmd = ['tar', 'xvf', filename, '-C', directory]
            if strip != 0:
                cmd.append('--strip-components=' + str(strip))
        elif ftype == 'zip':
            cmd = ['unzip', '-o', filename, '-d', directory]
        elif ftype == '7z':
            cmd = ['7z', '-y', 'x', filename, '-o' + directory]
        self.__exec(cmd)
Exemplo n.º 57
0
def find_configfile(filename, extra_configdir=''):
    default_path = pjoin(expanduser('~/.retorrent'), filename)
    if extra_configdir:
        config_paths.insert(0, extra_configdir)

    for path in config_paths:
        filepath = pjoin(path, filename)
        if pexists(filepath):
            # check permissions?
            return filepath

    # nothing found - touch an empty config return that
    touch_default(default_path)
    return default_path
Exemplo n.º 58
0
    def run(self):
        directory = pjoin(self._args.directory)

        if pexists(directory) and not pisdir(directory):
            error('{} is not directory'.format(directory))
            return -1
        if not pexists(self._args.file) and pisdir(self._args.file):
            error('{} is not file'.format(self._args.file))
            return -1
        if not pexists(directory):
            makedirs(directory)
        if self._args.as_qpkg:
            self.extract_qpkg(self._args.file, directory)
        elif self._args.as_image:
            self.extract_image(self._args.file, directory)
        elif self._args.file.endswith('.img'):
            self.extract_image(self._args.file, directory)
        elif self._args.file.endswith('.qpkg'):
            self.extract_qpkg(self._args.file, directory)
        else:
            error('Unknown file suffix. Speicify --qpkg or --image')
            return -1
        return 0
Exemplo n.º 59
0
 def icons(self):
     debug(self._label + "icon files")
     dest_base = pjoin(self._env["QPKG_DEST_CONTROL"], "icons")
     makedirs(dest_base)
     package_name = self._package["package"]
     icons = ((".icon.64", ".gif"), (".icon.80", "_80.gif"), (".icon.gray", "_gray.gif"))
     for suffix, rsuffix in icons:
         src = pjoin(Settings.CONTROL_PATH, package_name + suffix)
         dest = pjoin(dest_base, package_name + rsuffix)
         if not pexists(src):
             warning("Missing: " + src)
             copy(pjoin(Settings.TEMPLATE_PATH, Settings.CONTROL_PATH, Settings.DEFAULT_PACKAGE + suffix), dest)
             continue
         copy(src, dest)
         chmod(dest, 0644)
Exemplo n.º 60
0
    def __prepare_file(self, filename, action):
        if self._template is not None:
            filename = self._template

        fid, tmpfile = tempfile.mkstemp()
        os.close(fid)

        fd = open(tmpfile, "w")
        if self._content:
            fd.write(self._content)
        if pexists(filename):
            with open(filename, 'r') as fread:
                fd.writelines(fread)
        fd.close()
        return tmpfile