Exemplo n.º 1
0
def gen_items(space, covariate) :
  # Create an item bank to store the items.
  # Setting the property "sizeHint" increases allocation efficiency
  bank = gobject.new(oscats.ItemBank, sizeHint=N_ITEMS)
  # Create the items
  for i in range(N_ITEMS) :
    # First we create an IRT model container for our item
    # We have to specify which dimensions to be used with the "dims" array
    # (in this case, we use both of the dimensions of the space)
    model = gobject.new(oscats.ModelL2p, space=space, dims=dims, covariates=covariate)
    # Then, set the parameters.  Here there are 4:
    # Discrimination on two dimensions, difficulty, and covariate coef.
    model.set_param_by_name("Diff", oscats.oscats_rnd_normal(sqrt(3)))
    model.set_param_by_name("Discr.Cont.1",
                            oscats.oscats_rnd_uniform_range(0, 1))
    model.set_param_by_name("Discr.Cont.2",
                            oscats.oscats_rnd_uniform_range(0, 2))
    model.set_param_by_name(COVARIATE_NAME,
                            oscats.oscats_rnd_uniform_range(0.5, 1.5))
    # Create an item based on this model
    item = gobject.new(oscats.Item)
    item.set_model(item.get_default_model(), model)
    # Add the item to the item bank
    bank.add_item(item)
    # Since Python is garbage collected, we don't have to worry about
    # reference counting.
  return bank
Exemplo n.º 2
0
def gen_items(space, covariate):
    # Create an item bank to store the items.
    # Setting the property "sizeHint" increases allocation efficiency
    bank = gobject.new(oscats.ItemBank, sizeHint=N_ITEMS)
    # Create the items
    for i in range(N_ITEMS):
        # First we create an IRT model container for our item
        # We have to specify which dimensions to be used with the "dims" array
        # (in this case, we use both of the dimensions of the space)
        model = gobject.new(oscats.ModelL2p,
                            space=space,
                            dims=dims,
                            covariates=covariate)
        # Then, set the parameters.  Here there are 4:
        # Discrimination on two dimensions, difficulty, and covariate coef.
        model.set_param_by_name("Diff", oscats.oscats_rnd_normal(sqrt(3)))
        model.set_param_by_name("Discr.Cont.1",
                                oscats.oscats_rnd_uniform_range(0, 1))
        model.set_param_by_name("Discr.Cont.2",
                                oscats.oscats_rnd_uniform_range(0, 2))
        model.set_param_by_name(COVARIATE_NAME,
                                oscats.oscats_rnd_uniform_range(0.5, 1.5))
        # Create an item based on this model
        item = gobject.new(oscats.Item)
        item.set_model(item.get_default_model(), model)
        # Add the item to the item bank
        bank.add_item(item)
        # Since Python is garbage collected, we don't have to worry about
        # reference counting.
    return bank
Exemplo n.º 3
0
def gen_items(space):
    bank = oscats.ItemBank(sizeHint=N_ITEMS)
    for i in range(N_ITEMS):
        model = gobject.new(oscats.ModelL3p, space=space)
        model.set_param_by_name("Diff", oscats.oscats_rnd_uniform_range(-3, 3))
        model.set_param_by_name("Discr.Cont.1", oscats.oscats_rnd_uniform_range(0.8, 2.0))
        model.set_param_by_name("Guess", oscats.oscats_rnd_uniform_range(0.1, 0.3))
        item = oscats.Item(0, model)
        bank.add_item(item)
    return bank
Exemplo n.º 4
0
def gen_items(space):
    bank = oscats.ItemBank(sizeHint=N_ITEMS)
    for i in range(N_ITEMS):
        model = gobject.new(oscats.ModelL3p, space=space)
        model.set_param_by_name("Diff", oscats.oscats_rnd_uniform_range(-3, 3))
        model.set_param_by_name("Discr.Cont.1",
                                oscats.oscats_rnd_uniform_range(0.8, 2.0))
        model.set_param_by_name("Guess",
                                oscats.oscats_rnd_uniform_range(0.1, 0.3))
        item = oscats.Item(0, model)
        bank.add_item(item)
    return bank