Exemplo n.º 1
0
    def __iter__(self):
        gdal.TermProgress_nocb(0)
        total = self.layer.GetFeatureCount()
        for count, feature in enumerate(self.layer, 1):
            # geometry
            geometry = feature.geometry()
            envelope = geometry.GetEnvelope()
            order = 'x1', 'x2', 'y1', 'y2'
            width = int((envelope[1] - envelope[0]) / CELLSIZE)
            height = int((envelope[3] - envelope[2]) / CELLSIZE)
            origin = envelope[0], envelope[3]
            polygon = self.POLYGON.format(**dict(zip(order, envelope)))

            # path
            name = feature[NAME]
            path = join(self.targetdir, name[0:3], name + '.tif')

            # tile
            tile = Tile(
                path=path,
                width=width,
                height=height,
                origin=origin,
                polygon=polygon,
            )

            yield tile
            gdal.TermProgress_nocb(count / total)
Exemplo n.º 2
0
    def __iter__(self):
        """
        Return generator of (source, target, void) tuples.

        Source and target are views into a larger array. Void is a newly
        created array containing the footprint of the void.
        """
        if progress:  # pragma: no cover
            gdal.TermProgress_nocb(0)

        # analyze
        mask = (self.source == self.no_data_value)
        labels, total = ndimage.label(mask)
        items = ndimage.find_objects(labels)

        # iterate the objects
        for label, item in enumerate(items, 1):
            index = self._grow(item)  # to include the edge
            source = self.source[index]  # view into source array
            target = self.target[index]  # view into target array
            void = labels[index] == label  # the footprint of this void
            yield source, target, void

            if progress:  # pragma: no cover
                gdal.TermProgress_nocb(label / total)
Exemplo n.º 3
0
def extract(preparation):
    """
    Extract for a single feature.
    """
    source = preparation.get_source()
    target = preparation.get_target(source)

    total = len(target)
    gdal.TermProgress_nocb(0)
    batch = (c for b in target for c in b)
    queue = queues.Queue(maxsize=8)
    kwargs = {'queue': queue, 'batch': batch}

    thread1 = threading.Thread(target=filler, kwargs=kwargs)
    thread1.daemon = True
    thread1.start()

    while True:
        # fetch loaded chunks
        try:
            chunk, thread2 = queue.get()
            thread2.join()  # this makes sure the chunk is laoded
        except TypeError:
            break

        # save complete blocks
        if len(chunk.block.chunks) == len(chunk.block.inputs):
            chunk.block.save()
            gdal.TermProgress_nocb((chunk.block.tile.serial + 1) / total)

    thread1.join()
Exemplo n.º 4
0
 def __iter__(self):
     total = len(self)
     gdal.TermProgress_nocb(0)
     # this implementation works around an issue in pygdal
     # https://github.com/nextgis/pygdal/issues/31
     for i in range(total):
         yield self.layer[i]
         gdal.TermProgress_nocb((i + 1) / total)
Exemplo n.º 5
0
 def select(self, text):
     """ Return generator of features for text, e.g. '2/5' """
     selected, parts = map(int, text.split('/'))
     size = len(self) / parts
     start = int((selected - 1) * size)
     stop = len(self) if selected == parts else int(selected * size)
     total = stop - start
     gdal.TermProgress_nocb(0)
     for count, fid in enumerate(range(start, stop), 1):
         yield self.layer[fid]
         gdal.TermProgress_nocb(count / total)
Exemplo n.º 6
0
 def __init__(self, operations=0):
     self.steps = 1  #n. steps per operation
     self.operations = float(operations)
     self.progress = 0
     self.enabled = operations > 0
     if self.enabled:
         gdal.TermProgress_nocb(0)
Exemplo n.º 7
0
def gdal_ogr_mask_union(src_layer, src_field, dst_defn=None):
    '''`union` a `src_layer`'s features based on `src_field` where
    `src_field` holds a value of 0 or 1. optionally, specify
    an output layer defn for the unioned feature.

    returns the output feature class'''

    if dst_defn is None: dst_defn = src_layer.GetLayerDefn()
    multi = ogr.Geometry(ogr.wkbMultiPolygon)
    feats = len(src_layer)
    utils.echo_msg('unioning {} features'.format(feats))
    for n, f in enumerate(src_layer):
        gdal.TermProgress_nocb((n + 1 / feats) * 100)
        if f.GetField(src_field) == 0:
            src_layer.DeleteFeature(f.GetFID())
        elif f.GetField(src_field) == 1:
            f.geometry().CloseRings()
            wkt = f.geometry().ExportToWkt()
            multi.AddGeometryDirectly(ogr.CreateGeometryFromWkt(wkt))
            src_layer.DeleteFeature(f.GetFID())
    #union = multi.UnionCascaded() ## slow on large multi...
    out_feat = ogr.Feature(dst_defn)
    out_feat.SetGeometryDirectly(multi)
    #union = multi = None
    return (out_feat)
Exemplo n.º 8
0
def boxcar_x(image, bsize):
    (y, x) = image.shape
    # outimage = np.zeros([y,x],dtype=float32)
    outimage = image
    w = np.ones(bsize)
    # edge = int((bsize - 1) / 2)
    for j in range(0, x):
        gdal.TermProgress_nocb(float(j) / float(x))
        outimage[:, j] = np.convolve(w / w.sum(), image[:, j], mode='same')
    print('100')
    return outimage
Exemplo n.º 9
0
def read(archive, name):
    """ Read from zip into points. """
    logger.debug('Count lines in "{}".'.format(name))
    total = 100000
    with archive.open(name) as fobj:
        total = fobj.read().count('\n')
    points = np.empty((total, 3), dtype='f4')
    logger.debug('Reading points from "{}".'.format(name))
    with archive.open(name) as fobj:
        for count, line in enumerate(fobj):
            if count == total:
                break
            points[count] = line.split(',')
            gdal.TermProgress_nocb((count + 1) / total)
    return points
Exemplo n.º 10
0
def extract_model(preparation, fill_zeros):
    """
    Extract for a single feature.
    """
    source = preparation.get_source()
    target = preparation.get_target(source)

    total = len(target)
    gdal.TermProgress_nocb(0)
    batch = (c for b in target for c in b)
    queue = queues.Queue(maxsize=8)
    kwargs = {'queue': queue, 'batch': batch}

    thread1 = threading.Thread(target=filler, kwargs=kwargs)
    thread1.daemon = True
    thread1.start()

    while True:
        # fetch loaded chunks
        try:
            chunk, thread2 = queue.get()
            thread2.join()  # this makes sure the load method finished
        except TypeError:
            break

        # check if loading was a success
        if not chunk.loaded:
            print('Oops, a chunk failed to fetch. Resuming is worth a try!')
            return

        # save complete blocks
        if len(chunk.block.chunks) == len(chunk.block.inputs):
            chunk.block.save(fill_zeros)
            gdal.TermProgress_nocb((chunk.block.tile.serial + 1) / total)

    thread1.join()
Exemplo n.º 11
0
    ring.AddPoint(xur, yur)
    ring.AddPoint(xur, yll)
    ring.AddPoint(xll, yll)
    poly = ogr.Geometry(ogr.wkbPolygon)
    poly.AddGeometry(ring)

    inds1 = []
    for k in range(tiles.FeatureCount()):
        feat = tiles.features[k]
        if poly.Distance(feat.GetGeometryRef()) <= args.dist:
            inds1.append(k)

    # Second, find exactly the tiles within the given distance of the glacier outlines
    inds2 = []
    for k in range(len(inds1)):
        gdal.TermProgress_nocb(float(k) / len(inds1))

        feat = tiles.features[inds1[k]]
        if union.Distance(feat.GetGeometryRef(
        )) <= args.dist:  #union.Intersect(feat.GetGeometryRef()):
            inds2.append(inds1[k])

    list_tiles = np.sort(np.unique(tiles.fields.values['tile'][inds2]))

else:
    list_tiles = np.sort(np.unique(tiles.fields.values['tile']))

#list_tiles = ['32_34', '32_35', '32_36', '31_34','31_35', '31_36']

## Create output directory ##
if args.outdir != None:
Exemplo n.º 12
0
def main(argv):
    argv = gdal.GeneralCmdLineProcessor(argv)
    if argv is None:
        return 0

    driver_name = 'GTiff'
    src_color_filename = None
    src_greyscale_filename = None
    dst_color_filename = None
    quiet = False

    # Parse command line arguments.
    i = 1
    while i < len(argv):
        arg = argv[i]

        if arg == '-of':
            i = i + 1
            driver_name = argv[i]

        elif arg == '-q' or arg == '-quiet':
            quiet = True

        elif src_color_filename is None:
            src_color_filename = argv[i]

        elif src_greyscale_filename is None:
            src_greyscale_filename = argv[i]

        elif dst_color_filename is None:
            dst_color_filename = argv[i]
        else:
            Usage()

        i = i + 1

    if dst_color_filename is None:
        Usage()

    datatype = gdal.GDT_Byte

    hilldataset = gdal.Open(src_greyscale_filename, gdal.GA_ReadOnly)
    colordataset = gdal.Open(src_color_filename, gdal.GA_ReadOnly)

    # check for 3 or 4 bands in the color file
    if (colordataset.RasterCount != 3 and colordataset.RasterCount != 4):
        print(
            'Source image does not appear to have three or four bands as required.'
        )
        return 1

    # define output format, name, size, type and set projection
    out_driver = gdal.GetDriverByName(driver_name)
    outdataset = out_driver.Create(dst_color_filename,
                                   colordataset.RasterXSize,
                                   colordataset.RasterYSize,
                                   colordataset.RasterCount, datatype)
    outdataset.SetProjection(hilldataset.GetProjection())
    outdataset.SetGeoTransform(hilldataset.GetGeoTransform())

    # assign RGB and hillshade bands
    rBand = colordataset.GetRasterBand(1)
    gBand = colordataset.GetRasterBand(2)
    bBand = colordataset.GetRasterBand(3)
    if colordataset.RasterCount == 4:
        aBand = colordataset.GetRasterBand(4)
    else:
        aBand = None

    hillband = hilldataset.GetRasterBand(1)
    hillbandnodatavalue = hillband.GetNoDataValue()

    # check for same file size
    if ((rBand.YSize != hillband.YSize) or (rBand.XSize != hillband.XSize)):
        print('Color and hillshade must be the same size in pixels.')
        return 1

    # loop over lines to apply hillshade
    for i in range(hillband.YSize):
        # load RGB and Hillshade arrays
        rScanline = rBand.ReadAsArray(0, i, hillband.XSize, 1, hillband.XSize,
                                      1)
        gScanline = gBand.ReadAsArray(0, i, hillband.XSize, 1, hillband.XSize,
                                      1)
        bScanline = bBand.ReadAsArray(0, i, hillband.XSize, 1, hillband.XSize,
                                      1)
        hillScanline = hillband.ReadAsArray(0, i, hillband.XSize, 1,
                                            hillband.XSize, 1)

        # convert to HSV
        hsv = rgb_to_hsv(rScanline, gScanline, bScanline)

        # if there's nodata on the hillband, use the v value from the color
        # dataset instead of the hillshade value.
        if hillbandnodatavalue is not None:
            equal_to_nodata = numpy.equal(hillScanline, hillbandnodatavalue)
            v = numpy.choose(equal_to_nodata, (hillScanline, hsv[2]))
        else:
            v = hillScanline

        # replace v with hillshade
        hsv_adjusted = numpy.asarray([hsv[0], hsv[1], v])

        # convert back to RGB
        dst_color = hsv_to_rgb(hsv_adjusted)

        # write out new RGB bands to output one band at a time
        outband = outdataset.GetRasterBand(1)
        outband.WriteArray(dst_color[0], 0, i)
        outband = outdataset.GetRasterBand(2)
        outband.WriteArray(dst_color[1], 0, i)
        outband = outdataset.GetRasterBand(3)
        outband.WriteArray(dst_color[2], 0, i)
        if aBand is not None:
            aScanline = aBand.ReadAsArray(0, i, hillband.XSize, 1,
                                          hillband.XSize, 1)
            outband = outdataset.GetRasterBand(4)
            outband.WriteArray(aScanline, 0, i)

        # update progress line
        if not quiet:
            gdal.TermProgress_nocb((float(i + 1) / hillband.YSize))

    return 0
Exemplo n.º 13
0
    old_ds = gdal.Open(spath)
    vrt_ds = gdal.AutoCreateWarpedVRT(old_ds, None, srs.ExportToWkt(),
                                      gdal.GRA_Bilinear)
    gdal.GetDriverByName('gtiff').CreateCopy(tpath, vrt_ds)


if __name__ == "__main__":

    if os.path.exists(srcName) is False:
        print "路径错误 %s" % (srcName)
        sys.exit()
    list_of_files = []
    # 目录
    if os.path.isdir(srcName):
        for dirpath, dirnames, filenames in os.walk(srcName):
            for filepath in filenames:
                if filepath.lower().endswith(".tif"):
                    spath = os.path.join(dirpath, filepath)
                    tpath = tgtName + os.path.join(dirpath[len(srcName):],
                                                   filepath)
                    # print spath

                    tdir = os.path.dirname(tpath)
                    if os.path.exists(tdir) is False:
                        os.makedirs(tdir)
                    list_of_files.append((spath, tpath))
    gdal.TermProgress_nocb(0)
    for i in range(len(list_of_files)):
        process_file(list_of_files[i][0], list_of_files[i][1])
        gdal.TermProgress_nocb((i + 1) / float(len(list_of_files)))
Exemplo n.º 14
0
def command(shape_path, store_path, target_path, cellsize, time):
    """
    Prepare and extract the first feature of the first layer.
    """
    # process store
    store = GeoInterface(load(store_path))
    dtype = np.dtype(store.dtype).type
    fillvalue = store.fillvalue

    # process shape
    datasource = ogr.Open(shape_path)
    layer = datasource[0]

    feature = layer[0]
    geometry = feature.geometry()
    sr = get_projection(geometry.GetSpatialReference())
    if sr is None:
        print('Error: EPSG projection code missing from shape.')
        exit()

    # process target
    target = create_dataset(dtype=dtype,
                            path=target_path,
                            geometry=geometry,
                            cellsize=cellsize,
                            fillvalue=fillvalue)

    # prepare
    gdal.TermProgress_nocb(0)
    index = Index(target, geometry)
    no_data_value = target.GetRasterBand(1).GetNoDataValue()

    # work
    total = len(index)
    for count, tile in enumerate(index, 1):
        # get data
        kwargs = {
            'sr': sr,
            'start': time,
            'width': tile.width,
            'height': tile.height,
            'geom': tile.polygon.ExportToWkt()
        }
        data = store.get_data(**kwargs)

        # make source
        array = data['values']
        kwargs = {
            'projection': osr.GetUserInputAsWKT(sr),
            'geo_transform': tile.geo_transform,
            'no_data_value': no_data_value
        }

        with datasets.Dataset(array, **kwargs) as source:

            # set pixels outside geometry to 'no data'
            outside = tile.polygon.Difference(geometry)
            burn(dataset=source, geometry=outside, value=no_data_value)

            # write to target
            p1, q1 = tile.origin
            DRIVER_GDAL_MEM.CreateCopy('', source)
            target.WriteRaster(
                p1,
                q1,
                tile.width,
                tile.height,
                source.ReadRaster(0, 0, tile.width, tile.height),
            )

        gdal.TermProgress_nocb(count / total)
Exemplo n.º 15
0
    def process(self, session, srs, subdomain, time, uuid):
        """
        Extract for a single feature.

        :param session: requests.Sesssion object, logged in.
        :param srs: str defining spatial reference system
        :param time: ISO-8601 timestamp
        :param uuid: Lizard raster UUID
        """
        completed = self.indicator.get()
        total = len(self.target)
        if completed == total:
            print('Already complete.')
            return
        if completed > 0:
            print('Resuming from chunk %s.' % completed)

        gdal.TermProgress_nocb(completed / total)

        # run a thread that starts putting chunks with threads in a queue
        queue = queues.Queue(maxsize=MAX_THREADS - 1)
        filler_kwargs = {
            'chunks': self.target.get_chunks(start=completed + 1),
            'subdomain': subdomain,
            'session': session,
            'queue': queue,
            'uuid': uuid,
            'time': time,
            'srs': srs,
        }
        filler_thread = threading.Thread(target=filler, kwargs=filler_kwargs)
        filler_thread.daemon = True
        filler_thread.start()

        while True:
            # fetch loaded chunks
            try:
                fetch_thread, chunk = queue.get()
                fetch_thread.join()  # this makes sure the chunk is loaded
            except TypeError:
                self.indicator.set(completed)
                break

            # abort on errors
            if chunk.response.status_code != 200:
                # remember last completed chunk
                self.indicator.set(completed)

                # abort
                print('\nFailed to fetch a chunk! The url used was:')
                print(chunk.response.url)
                msg = 'The server responded with status code %s (%s).'
                status_code = chunk.response.status_code
                print(msg % (status_code, responses[status_code]))
                exit()

            # save the chunk to the target
            self.target.save(chunk)
            completed = chunk.serial
            gdal.TermProgress_nocb(completed / total)

        filler_thread.join()
Exemplo n.º 16
0
 def progressbar(self, complete=0.0):
     gdal.TermProgress_nocb(complete)
Exemplo n.º 17
0
 def update_progress(self):
     if self.enabled:
         self.progress += 1.0
         gdal.TermProgress_nocb(self.progress /
                                (self.operations * self.steps))
Exemplo n.º 18
0
    0,
    0,
    0,
    0,
    0,
    0,
    0
]

#Make the values list into a numpy array
FOMarray = numpy.array(FOMmap)

for iBand in range(1, indataset.RasterCount + 1):
    inband = indataset.GetRasterBand(iBand)
    outband = outdataset.GetRasterBand(iBand)

    for i in range(inband.YSize - 1, -1, -1):
        scanline = inband.ReadAsArray(0, i, inband.XSize, 1, inband.XSize, 1)

        #Numpy.choose bug (some versions) which only allows 32 elements - so changed to iteration
        #scanline = numpy.choose(scanline, FOMmap, mode='clip')
        #Let numpy iterate and replace...
        scanline[:] = FOMarray[scanline]

        outband.WriteArray(scanline, 0, i)

        #update progress line
        if not quiet:
            gdal.TermProgress_nocb(
                (float(inband.YSize - i + 1) / inband.YSize))
Exemplo n.º 19
0
def main(mintpyDict, outshp):
    '''
    Main driver.
    '''

    shpDriver = ogr.GetDriverByName("ESRI Shapefile")

    ##Check if shape file already exists
    if os.path.exists(outshp):
        print('Output shape file {} exists. Will be overwritten ....'.format(outshp))
        shpDriver.DeleteDataSource(outshp)

    ##Start creating shapefile dataset and layer definition
    ds = shpDriver.CreateDataSource(outshp)
    srs = ogr.osr.SpatialReference()
    srs.ImportFromEPSG(4326)
    layer = ds.CreateLayer( 'mintpy', srs, geom_type=ogr.wkbPoint)

    #Add code for each point
    fd = ogr.FieldDefn('CODE', ogr.OFTString)
    fd.SetWidth(8)
    layer.CreateField(fd)

    #Add DEM height for each point - this could be before / after DEM error correction
    fd =  ogr.FieldDefn('HEIGHT', ogr.OFTReal)
    fd.SetWidth(7)
    fd.SetPrecision(2)
    layer.CreateField(fd)

    #Supposed to represent DEM error estimation uncertainty
    fd = ogr.FieldDefn('H_STDEV', ogr.OFTReal)
    fd.SetWidth(5)
    fd.SetPrecision(2)
    layer.CreateField(fd)

    #Estimated LOS velocity
    fd = ogr.FieldDefn('VEL', ogr.OFTReal)
    fd.SetWidth(8)
    fd.SetPrecision(2)
    layer.CreateField(fd)

    #Estimated uncertainty in velocity
    fd = ogr.FieldDefn('V_STDEV', ogr.OFTReal)
    fd.SetWidth(6)
    fd.SetPrecision(2)
    layer.CreateField(fd)

    #Temporal coherence
    fd = ogr.FieldDefn('COHERENCE', ogr.OFTReal)
    fd.SetWidth(5)
    fd.SetPrecision(3)
    layer.CreateField(fd)

    #Effective area - SqueeSAR DS / PS
    layer.CreateField( ogr.FieldDefn('EFF_AREA', ogr.OFTInteger))

    ##Time to load the dates from time-series HDF5 field and create one attribute for each date
    ts_obj = timeseries(mintpyDict['TimeSeries'])
    ts_obj.open()
    for date in ts_obj.dateList:
        fd = ogr.FieldDefn('D{0}'.format(date), ogr.OFTReal)
        fd.SetWidth(8)
        fd.SetPrecision(2)
        layer.CreateField(fd)
    layerDefn = layer.GetLayerDefn()

    ####Total number of points
    mask = readfile.read(mintpyDict['Mask'])[0]
    nValid = np.sum(mask != 0)
    print('Number of points with time-series: ', nValid)

    gdal.TermProgress_nocb(0.0)
    ###Loop over all datasets in context managers to skip close statements
    with h5py.File(mintpyDict['TimeSeries'], 'r') as tsid:
        nLines = tsid['timeseries'].shape[1]
        nPixels = tsid['timeseries'].shape[2]
        with h5py.File(mintpyDict['Velocity'], 'r') as velid:
            with h5py.File(mintpyDict['Coherence'], 'r') as cohid:
                with h5py.File(mintpyDict['Geometry'], 'r') as geomid:

                    #Start counter
                    counter = 1

                    #For each line
                    for line in range(nLines):
                        coh = cohid['temporalCoherence'][line,:].astype(np.float64)
                        vel = velid['velocity'][line,:].astype(np.float64)
                        velstd = velid['velocityStd'][line,:].astype(np.float64)
                        ts = tsid['timeseries'][:,line,:].astype(np.float64)
                        lat = geomid['latitude'][line,:].astype(np.float64)
                        lon = geomid['longitude'][line,:].astype(np.float64)
                        hgt = geomid['height'][line,:].astype(np.float64)
                        for ii in range(nPixels):
                            #If velocity is zero, dont include. What about ref pixel?
                            #Reference point is included in maskTempCoh.h5
                            if mask[line, ii] == 0:
                                continue
                            
                            #Create metadata dict
                            rdict = { 'CODE'      : hex(counter)[2:].zfill(8),
                                      'HEIGHT'    : hgt[ii],
                                      'H_STDEV'   : 0.,
                                      'VEL'       : vel[ii]*1000,
                                      'V_STDEV'   : velstd[ii]*1000,
                                      'COHERENCE' : coh[ii],
                                      'EFF_AREA'  : 1}

                            for ind, date in enumerate(ts_obj.dateList):
                                rdict['D{0}'.format(date)] = ts[ind, ii] * 1000

                            #Create feature with definition
                            feature = ogr.Feature(layerDefn)
                            addMetadata(feature, [lon[ii], lat[ii]], rdict) 
                            layer.CreateFeature(feature)
                            feature = None
                            counter = counter + 1

                        gdal.TermProgress_nocb(counter / nValid)
Exemplo n.º 20
0
    def progressbar(self, complete=0.0):
        """Print progressbar for float value 0..1"""

        gdal.TermProgress_nocb(complete)
Exemplo n.º 21
0
    # if there's nodata on the hillband, use the v value from the color
    # dataset instead of the hillshade value.
    if hillbandnodatavalue is not None:
        equal_to_nodata = numpy.equal(hillScanline, hillbandnodatavalue)
        v = numpy.choose(equal_to_nodata, (hillScanline, hsv[2]))
    else:
        v = hillScanline

    # replace v with hillshade
    hsv_adjusted = numpy.asarray([hsv[0], hsv[1], v])

    # convert back to RGB
    dst_color = hsv_to_rgb(hsv_adjusted)

    # write out new RGB bands to output one band at a time
    outband = outdataset.GetRasterBand(1)
    outband.WriteArray(dst_color[0], 0, i)
    outband = outdataset.GetRasterBand(2)
    outband.WriteArray(dst_color[1], 0, i)
    outband = outdataset.GetRasterBand(3)
    outband.WriteArray(dst_color[2], 0, i)
    if aBand is not None:
        aScanline = aBand.ReadAsArray(0, i, hillband.XSize, 1, hillband.XSize,
                                      1)
        outband = outdataset.GetRasterBand(4)
        outband.WriteArray(aScanline, 0, i)

    # update progress line
    if not quiet:
        gdal.TermProgress_nocb((float(i + 1) / hillband.YSize))
Exemplo n.º 22
0
    ds.GetRasterBand(i + 1).ComputeStatistics(False, gdal.TermProgress_nocb)


# How about using the gdal callback function with my own stuff? Let's just
# list all of the files in the current diretory and pretend to do something
# with them.
def process_file(fn):
    # Slow things down a bit by counting to 1,000,000 for each file.
    for i in range(1000000):
        pass  # do nothing


list_of_files = os.listdir('.')
for i in range(len(list_of_files)):
    process_file(list_of_files[i])
    gdal.TermProgress_nocb(i / float(len(list_of_files)))
gdal.TermProgress_nocb(100)

######################  9.8 Exceptions and error handlers  ####################

os.chdir(os.path.join(data_dir, 'Switzerland'))

# This will fail because the second filename has an extra f at the end. The
# first one is the only one that will get statistics calculated.
file_list = ['dem_class.tif', 'dem_class2.tiff', 'dem_class3.tif']
for fn in file_list:
    ds = gdal.Open(fn)
    ds.GetRasterBand(1).ComputeStatistics(False)

# You could check to see if the file could be opened and skip it if not.
for fn in file_list: