Exemplo n.º 1
0
    def __init__(self,
                 data,
                 bvecs,
                 bvals,
                 params_file=None,
                 axial_diffusivity=AD,
                 radial_diffusivity=RD,
                 affine=None,
                 mask=None,
                 scaling_factor=SCALE_FACTOR,
                 sub_sample=None,
                 over_sample=None,
                 verbose=True,
                 mode='relative_signal',
                 n_canonicals=2):
        """
        Initialize a MultiCanonicalTensorModel class instance.
        """
        # Initialize the super-class:
        CanonicalTensorModel.__init__(self,
                                      data,
                                      bvecs,
                                      bvals,
                                      params_file=params_file,
                                      axial_diffusivity=axial_diffusivity,
                                      radial_diffusivity=radial_diffusivity,
                                      affine=affine,
                                      mask=mask,
                                      scaling_factor=scaling_factor,
                                      sub_sample=sub_sample,
                                      over_sample=over_sample,
                                      mode=mode,
                                      verbose=verbose)

        self.n_canonicals = n_canonicals
 def __init__(self,
              data,
              bvecs,
              bvals,
              params_file=None,
              axial_diffusivity=AD,
              radial_diffusivity=RD,
              affine=None,
              mask=None,
              scaling_factor=SCALE_FACTOR,
              sub_sample=None,
              over_sample=None,
              verbose=True,
              mode='relative_signal',
              n_canonicals=2):
     """
     Initialize a MultiCanonicalTensorModel class instance.
     """
     # Initialize the super-class:
     CanonicalTensorModel.__init__(self,
                                   data,
                                   bvecs,
                                   bvals,
                                   params_file=params_file,
                                   axial_diffusivity=axial_diffusivity,
                                   radial_diffusivity=radial_diffusivity,
                                   affine=affine,
                                   mask=mask,
                                   scaling_factor=scaling_factor,
                                   sub_sample=sub_sample,
                                   over_sample=over_sample,
                                   mode=mode,
                                   verbose=verbose)
     
     self.n_canonicals = n_canonicals
    def __init__(self,
                 data,
                 bvecs,
                 bvals,
                 calibration_roi,
                 params_file=None,
                 affine=None,
                 mask=None,
                 scaling_factor=SCALE_FACTOR,
                 sub_sample=None,
                 over_sample=None,
                 verbose=True):
        """
        Initialize a CalibratedCanonicalTensorModel instance.

        Parameters
        ----------

        calibration_roi: full path to a nifti file containing zeros everywhere,
        except ones where the calibration ROI is defined. Should be already
        registered and xformed to the DWI data resolution/alignment. 

        """
        # Initialize the super-class, we set AD and RD to None, to prevent
        # things from going forward before calibration has occurred. This will
        # probably cause an error to be thrown, if calibration doesn't
        # happen. We might want to catch that error and explain it to the
        # user... 
        CanonicalTensorModel.__init__(self,
                                      data,
                                      bvecs,
                                      bvals,
                                      params_file=params_file,
                                      axial_diffusivity=None,
                                      radial_diffusivity=None,
                                      affine=affine,
                                      mask=mask,
                                      scaling_factor=scaling_factor,
                                      sub_sample=sub_sample,
                                      over_sample=over_sample,
                                      verbose=verbose)


        # This is used to initialize the optimization in each voxel.
        # The orientation parameters are chosen to be close to horizontal.
        
        self.start_params = np.pi/2, 0, 0.5, 1.5, 0
                           #theta, phi, beta, lambda1, lambda2
        self.calibration_roi = calibration_roi
Exemplo n.º 4
0
    def __init__(self,
                 data,
                 bvecs,
                 bvals,
                 calibration_roi,
                 params_file=None,
                 affine=None,
                 mask=None,
                 scaling_factor=SCALE_FACTOR,
                 sub_sample=None,
                 over_sample=None,
                 verbose=True):
        """
        Initialize a CalibratedCanonicalTensorModel instance.

        Parameters
        ----------

        calibration_roi: full path to a nifti file containing zeros everywhere,
        except ones where the calibration ROI is defined. Should be already
        registered and xformed to the DWI data resolution/alignment. 

        """
        # Initialize the super-class, we set AD and RD to None, to prevent
        # things from going forward before calibration has occurred. This will
        # probably cause an error to be thrown, if calibration doesn't
        # happen. We might want to catch that error and explain it to the
        # user...
        CanonicalTensorModel.__init__(self,
                                      data,
                                      bvecs,
                                      bvals,
                                      params_file=params_file,
                                      axial_diffusivity=None,
                                      radial_diffusivity=None,
                                      affine=affine,
                                      mask=mask,
                                      scaling_factor=scaling_factor,
                                      sub_sample=sub_sample,
                                      over_sample=over_sample,
                                      verbose=verbose)

        # This is used to initialize the optimization in each voxel.
        # The orientation parameters are chosen to be close to horizontal.

        self.start_params = np.pi / 2, 0, 0.5, 1.5, 0
        #theta, phi, beta, lambda1, lambda2
        self.calibration_roi = calibration_roi
Exemplo n.º 5
0
    def __init__(self,
                 tissue_fraction,
                 data,
                 bvecs,
                 bvals,
                 alpha1,
                 alpha2,
                 water_D=3,
                 gray_D=1,
                 params_file=None,
                 axial_diffusivity=AD,
                 radial_diffusivity=RD,
                 affine=None,
                 mask=None,
                 scaling_factor=SCALE_FACTOR,
                 sub_sample=None,
                 over_sample=None,
                 verbose=True):
        
        # Initialize the super-class:
        CanonicalTensorModel.__init__(self,
                                      data,
                                      bvecs,
                                      bvals,
                                      params_file=params_file,
                                      axial_diffusivity=axial_diffusivity,
                                      radial_diffusivity=radial_diffusivity,
                                      affine=affine,
                                      mask=mask,
                                      scaling_factor=scaling_factor,
                                      sub_sample=sub_sample,
                                      over_sample=over_sample,
                                      verbose=verbose)

        self.tissue_fraction = ni.load(tissue_fraction).get_data()

        # Convert the diffusivity constants to signal attenuation:
        self.gray_D = np.exp(-self.bvals[self.b_idx][0] * gray_D)
        self.water_D = np.exp(-self.bvals[self.b_idx][0] * water_D)

        # We're going to grid-search over these:
        self.alpha1 = alpha1
        self.alpha2 = alpha2
Exemplo n.º 6
0
    def __init__(self,
                 data,
                 bvecs,
                 bvals,
                 solver=None,
                 solver_params=None,
                 params_file=None,
                 axial_diffusivity=AD,
                 radial_diffusivity=RD,
                 affine=None,
                 mask=None,
                 scaling_factor=SCALE_FACTOR,
                 sub_sample=None,
                 over_sample=None,
                 mode='relative_signal',
                 verbose=True,
                 force_recompute=False):
        """
        Initialize SparseDeconvolutionModel class instance.
        """
        # Initialize the super-class:
        CanonicalTensorModel.__init__(self,
                                      data,
                                      bvecs,
                                      bvals,
                                      params_file=params_file,
                                      axial_diffusivity=axial_diffusivity,
                                      radial_diffusivity=radial_diffusivity,
                                      affine=affine,
                                      mask=mask,
                                      scaling_factor=scaling_factor,
                                      sub_sample=sub_sample,
                                      over_sample=over_sample,
                                      mode=mode,
                                      verbose=verbose)
        
        # Name the params file, if needed: 
        this_class = str(self.__class__).split("'")[-2].split('.')[-1]
        self.params_file = params_file_resolver(self,
                                                this_class,
                                                params_file=params_file)

        # Deal with the solver stuff: 
        # For now, the default is ElasticNet:
        if solver is None:
            this_solver = sklearn_solvers['ElasticNet']
        # Assume it's a key into the dict: 
        elif isinstance(solver, str):
            this_solver = sklearn_solvers[solver]
        # Assume it's a class: 
        else:
            this_solver = solver
        
        # This will be passed as kwarg to the solver initialization:
        if solver_params is None:
            # This seems to be good for our data:
            alpha = 0.0005
            l1_ratio = 0.6
            self.solver_params = dict(alpha=alpha,
                                      l1_ratio=l1_ratio,
                                      fit_intercept=True,
                                      positive=True)
        else:
            self.solver_params = solver_params

        # We reuse the same class instance in all voxels: 
        self.solver = this_solver(**self.solver_params)

        # This is only here for now, but should be implemented in the
        # base-class (all the way up?) and generalized in a wrapper to model
        # params, I believe. 
        self.force_recompute = force_recompute