Exemplo n.º 1
0
def test_bukin():

    logger.info(
        'Test Bukin_pdf: Bukin function: skew gaussian core + exponenial/gaussian  tails'
    )
    model_bukin = Models.Fit1D(signal=Models.Bukin_pdf(
        name='Bukin',
        xvar=mass,
        xi=0,
        rhoL=0,
        rhoR=0,
        mean=signal_gauss.mean,
        sigma=signal_gauss.sigma),
                               background=Models.Bkg_pdf('BkgBK',
                                                         xvar=mass,
                                                         power=0),
                               S=S,
                               B=B)

    model_bukin.signal.mean.fix(m.value())
    model_bukin.signal.sigma.fix(m.error())
    model_bukin.S.setVal(5000)
    model_bukin.B.setVal(500)

    with rooSilent():
        result, frame = model_bukin.fitTo(dataset0)
        model_bukin.signal.xi.release()
        result, frame = model_bukin.fitTo(dataset0)
        model_bukin.signal.rhoL.release()
        result, frame = model_bukin.fitTo(dataset0)
        model_bukin.signal.rhoR.release()
        result, frame = model_bukin.fitTo(dataset0)
        model_bukin.signal.mean.release()
        model_bukin.signal.sigma.release()
        result, frame = model_bukin.fitTo(dataset0)

        model_bukin.draw(dataset0)

    if 0 != result.status() or 3 != result.covQual():
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                       (result.status(), result.covQual()))

    logger.info('Bukin function\n%s' % result.table(prefix="# "))

    models.add(model_bukin)
Exemplo n.º 2
0
def test_bukin():

    logger.info(
        'Test Bukin_pdf: Bukin function: skew gaussian core + exponenial/gaussian  tails'
    )
    model_bukin = Models.Fit1D(signal=Models.Bukin_pdf(
        name='Bukin',
        mass=mass,
        xi=0,
        rhol=0,
        rhor=0,
        mean=signal_gauss.mean,
        sigma=signal_gauss.sigma),
                               background=Models.Bkg_pdf('BkgBK',
                                                         mass=mass,
                                                         power=0))

    model_bukin.signal.mean.fix(m.value())
    model_bukin.signal.sigma.fix(m.error())
    model_bukin.s.setVal(5000)
    model_bukin.b.setVal(500)

    with rooSilent():
        result, frame = model_bukin.fitTo(dataset0)
        model_bukin.signal.xi.release()
        result, frame = model_bukin.fitTo(dataset0)
        model_bukin.signal.rhol.release()
        result, frame = model_bukin.fitTo(dataset0)
        model_bukin.signal.rhor.release()
        result, frame = model_bukin.fitTo(dataset0)
        model_bukin.signal.mean.release()
        model_bukin.signal.sigma.release()
        result, frame = model_bukin.fitTo(dataset0)

    if 0 != result.status() or 3 != result.covQual():
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                       (result.status(), result.covQual()))
        print result
    else:
        logger.info('Signal & Background are: %-28s & %-28s ' %
                    (result('S')[0], result('B')[0]))
        logger.info('Mean   & Sigma      are: %-28s & %-28s ' %
                    (result('mean_Gauss')[0], result('sigma_Gauss')[0]))

    models.add(model_bukin)
Exemplo n.º 3
0
from Functions import *
#-------------------------------------------------------------------------------
rfile = ROOT.TFile("test_file.root", "READ")
ds = rfile["ds"]
#-------------------------------------------------------------------------------
im = ROOT.RooRealVar('im', 'im', 2.240, 2.330)
pk = ROOT.RooRealVar('pk', 'peak   ', 2.2875, 2.286, 2.289)
sg = ROOT.RooRealVar('sg', 'sigma', 0.0045, 0.003, 0.010)
rl = ROOT.RooRealVar('rl', 'rhoL', 0.0000, 0.000, 2.000)
rr = ROOT.RooRealVar('rr', 'rhoR', 0.0000, 0.000, 2.000)
xi = ROOT.RooRealVar('xi', 'xi', 0.0000, -0.010, 0.010)
#-------------------------------------------------------------------------------
sig_bu = Models.Bukin_pdf('sig_bu',
                          xvar=im,
                          mean=pk,
                          sigma=sg,
                          xi=xi,
                          rhoL=rl,
                          rhoR=rr)
bkg0 = Models.Bkg_pdf('bkg0', xvar=im, power=0)
model = Models.Fit1D(signal=sig_bu, background=bkg0)
#-------------------------------------------------------------------------------
dh = (ds.reduce(ROOT.RooArgSet(im), "im>0")).binnedClone()
with timing():
    r, w = model.fitTo(dh)
    r, w = model.fitTo(ds, draw=True, nbins=100, ncpu=4)
#-------------------------------------------------------------------------------
print(r)
#-------------------------------------------------------------------------------
h = w.pullHist()
draw_param(r,