Exemplo n.º 1
0
    im2 = PImagePlots(shift=True, nx= imsize, ny=imsize)
    im2.invertSf(sfx=xrpix, sf=sfpix)
    im2.invertAcovf1d()
    im2.invertAcovf2d(useI=True)
    im2.invertPsd2d(useI=True)
    im2.invertFft(useI=True)
    im2.showImageI()
    pylab.savefig('clouds_2.png', format='png')

    # Compare structure functions, but scaled (due to loss of amplitude info with random phases)
    im2.image = im2.imageI.real
    im2.calcAll(min_npix=2, min_dr=1)
    im2.plotMore()
    pylab.savefig('clouds_2_dat.png', format='png')
    im2.sfx = im2.sfx * pixscale
    im2.sf = im2.sf/im2.sf.max()
    im.sf = im.sf/im.sf.max()
    im.showSf(linear=True, comparison=im2, legendlabels=['Clouds 1 (scaled)', 'Clouds 2 (scaled)'])
    rm = rad_fov
    condition = (numpy.abs(xsf - rm) < 0.2)
    SF2 = SF - SF.min()
    SF2 = SF2 / SF[condition].mean()
    pylab.plot(xsf, SF2, 'k:', label='Original/SDSS (scaled)')
    pylab.xlim(0, rm)
    pylab.ylim(0, 1.2)
    pylab.legend(numpoints=1, fancybox=True, fontsize='smaller')
    pylab.title('Structure Function')
    pylab.xlabel('Degrees')
    pylab.savefig('clouds_sf_new.png', format='png')
    
Exemplo n.º 2
0
    print 'Image After Trimming: Rad_fov', rad_fov, 'Imsize', imsize, 'Pixscale', pixscale, 'deg/pix', '(', pixscale*60.*60., 'arcsec/pix)'    
    im2.setImage(image.real)
    imageStats(im2.image)
    im2.showImage(copy=True)
    im2.hanningFilter()
    im2.calcAll()
    im2.showPsd2d()
    im2.showAcovf2d()
    im2.showAcovf1d(comparison=im)

    # Compare structure functions, but scaled (due to loss of amplitude info with random phases)     
    im.sfx = im.sfx * pixscale
    im2.sfx = im2.sfx * pixscale
    scaleval = im.sf[numpy.abs(im.sfx - goal_rad_fov)<0.05].mean()
    print 'Cloud 1 scaleval', scaleval
    im.sf = im.sf/scaleval
    scaleval = im2.sf[numpy.abs(im2.sfx - goal_rad_fov)<0.05].mean()
    print 'Cloud 2 scaleval', scaleval
    im2.sf = im2.sf/scaleval
    im.showSf(linear=True, comparison=im2, legendlabels=['Clouds 1', 'Clouds 2'])
    scaleval = SF[numpy.where(numpy.abs(xsf - goal_rad_fov)<0.2)].mean()
    print 'ARMA scaleval', scaleval
    SF2 = SF / scaleval
    pylab.plot(xsf, SF2, 'k:', label='Original/ARMA')
    pylab.xlim(0, goal_rad_fov*1.2)
    pylab.ylim(0, 1.2)
    pylab.legend(numpoints=1, fancybox=True, fontsize='smaller')
    pylab.title('Structure Function (mag)')
    pylab.xlabel('Degrees')

    
Exemplo n.º 3
0
def clouds():
    """Read an example of the french group's cloud generation."""
    # oldCloud.npy and newCloud.npy are images of size 240x240 that cover a fov of 4.0 deg 
    #  (if cloud generation code is understood correctly).
    # old clouds
    oldClouds = numpy.load('oldCloud.npy')
    fov = 4.0 #rad_fov = 2.0
    nx = len(oldClouds)
    pixscale = fov / float(nx)
    im = PImagePlots(shift=True)
    im.setImage(oldClouds)
    im.showImage()
    pylab.savefig('clouds_oldimage.%s' %(figformat), format='%s' %(figformat))
    #im.hanningFilter()
    im.calcAll(min_npix=2, min_dr=1)
    im.plotMore()
    pylab.savefig('clouds_old.%s' %(figformat), format='%s' %(figformat))    
    # new clouds
    newClouds = numpy.load('newCloud.npy')
    im2 = PImagePlots(shift=True)
    im2.setImage(newClouds)
    im2.showImage()
    pylab.savefig('clouds_newimage.%s' %(figformat), format='%s' %(figformat))
    #im2.hanningFilter()
    im2.calcAll(min_npix=2, min_dr=1)
    im2.plotMore()
    pylab.savefig('clouds_new.%s' %(figformat), format='%s' %(figformat))
    # compare structure functions
    # translate x axis from pixels to degrees .. 240 pix = 4.0 deg (?)
    im.sfx = im.sfx *pixscale
    im2.sfx = im2.sfx *pixscale
    # and scale SF's to just run between 0 and 1 (because of loss of amplitude info with random phases)
    im.sf = im.sf / im.sf.max()
    im2.sf = im2.sf / im2.sf.max()
    legendlabels = ['Old clouds (scaled SF)', 'New clouds (scaled SF)']
    im.showSf(comparison=im2, legendlabels=legendlabels, linear=True)
    pylab.xlim(0, fov/2.0)
    pylab.ylim(0, 1.2)
    pylab.title('Structure Function')
    pylab.xlabel('Degrees')
    pylab.savefig('clouds_sf.%s' %(figformat), format='%s' %(figformat))
    # look at phase spectrum
    pylab.figure()
    n, b, p = pylab.hist(im.phasespec.flatten(), bins=75, range=[-numpy.pi, numpy.pi], 
                         alpha=0.2, label='Old clouds phases')
    n, b, p = pylab.hist(im2.phasespec.flatten(), bins=b, range=[-numpy.pi, numpy.pi], 
                         alpha=0.2, label='New clouds phases')
    pylab.legend(fancybox=True, fontsize='smaller')
    pylab.savefig('clouds_phasehist.%s' %(figformat), format='%s' %(figformat))
    # the phase spectrum seems to be flatly distributed between -pi and pi
    pylab.figure()
    pylab.subplot(121)
    pylab.title('Old clouds')
    pylab.imshow(im.phasespec, origin='lower')
    pylab.colorbar(shrink=0.6)
    pylab.subplot(122)
    pylab.title('New clouds')    
    pylab.imshow(im2.phasespec, origin='lower')
    pylab.colorbar(shrink=0.6)
    pylab.suptitle('Phase spectrum')
    pylab.savefig('clouds_phasespec.%s' %(figformat), format='%s' %(figformat))
    pylab.close()
    return