Exemplo n.º 1
0
    def __init__(self, nddistr=None, d=None):
        super(TwoVarsModel, self).__init__(nddistr, [d])
        self.eliminate_other([d])
        self.d = d
        self.vars = []
        self.symvars = []
        for var in nddistr.Vars: #self.free_rvs:
            self.vars.append(var)
            self.symvars.append(var.getSymname())
        #print "=====", self.vars
        #print self.symvars
        #print self.dep_rvs
        #print self.rv_to_equation
        self.symop = self.rv_to_equation[d]

        if len(self.vars) != 2:
            raise Exception("use it with two variables")
        x = self.symvars[0]
        y = self.symvars[1]
        z = sympy.Symbol("z")
        self.fun_alongx = eq_solve(self.symop, z, y)[0]
        self.fun_alongy = eq_solve(self.symop, z, x)[0]

        self.lfun_alongx = my_lambdify([x, z], self.fun_alongx, "numpy")
        self.lfun_alongy = my_lambdify([y, z], self.fun_alongy, "numpy")
        self.Jx = 1 * sympy.diff(self.fun_alongx, z)
        #print "Jx=", self.Jx
        #print "fun_alongx=", self.fun_alongx
        self.Jy = 1 * sympy.diff(self.fun_alongy, z)
        self.lJx = my_lambdify([x, z], self.Jx, "numpy")
        self.lJy = my_lambdify([y, z], self.Jy, "numpy")
        self.z = z
Exemplo n.º 2
0
    def __init__(self, nddistr=None, d=None):
        super(TwoVarsModel, self).__init__(nddistr, [d])
        self.eliminate_other([d])
        self.d = d
        self.vars = []
        self.symvars = []
        for var in nddistr.Vars:  #self.free_rvs:
            self.vars.append(var)
            self.symvars.append(var.getSymname())
        #print "=====", self.vars
        #print self.symvars
        #print self.dep_rvs
        #print self.rv_to_equation
        self.symop = self.rv_to_equation[d]

        if len(self.vars) != 2:
            raise Exception("use it with two variables")
        x = self.symvars[0]
        y = self.symvars[1]
        z = sympy.Symbol("z")
        self.fun_alongx = eq_solve(self.symop, z, y)[0]
        self.fun_alongy = eq_solve(self.symop, z, x)[0]

        self.lfun_alongx = my_lambdify([x, z], self.fun_alongx, "numpy")
        self.lfun_alongy = my_lambdify([y, z], self.fun_alongy, "numpy")
        self.Jx = 1 * sympy.diff(self.fun_alongx, z)
        #print "Jx=", self.Jx
        #print "fun_alongx=", self.fun_alongx
        self.Jy = 1 * sympy.diff(self.fun_alongy, z)
        self.lJx = my_lambdify([x, z], self.Jx, "numpy")
        self.lJy = my_lambdify([y, z], self.Jy, "numpy")
        self.z = z
Exemplo n.º 3
0
    def var_change_helper(self, free_var, dep_var):
        """Compute inverse transformation and Jacobian for substituting
        dep_var for free_var."""
        free_var = self.prepare_var(free_var)
        dep_var = self.prepare_var(dep_var)
        # inverve transformation
        equation = self.rv_to_equation[dep_var] - dep_var.getSymname()
        solutions = eq_solve(self.rv_to_equation[dep_var],
                             dep_var.getSymname(), free_var.getSymname())
        var_changes = []
        for uj in solutions:
            # remove complex valued solutions
            vj = uj.atoms(sympy.Symbol)
            hvj = {}
            for v in vj:
                #print self.sym_to_rv[v].range()
                hvj[v] = self.sym_to_rv[v].range()[1]
            if len(solutions) > 1 and not sympy.im(uj.subs(hvj)) == 0:
                continue
            uj_symbols = list(sorted(uj.atoms(sympy.Symbol), key=str))
            inv_transf = my_lambdify(uj_symbols, uj, "numpy")
            inv_transf_vars = [self.sym_to_rv[s] for s in uj_symbols]

            if params.models.debug_info:
                #print "vars to change: ", free_var.getSymname(), " <- ", dep_var.getSymname(), "=", self.rv_to_equation[dep_var]
                #print "equation: ", dep_var.getSymname(), "=", self.rv_to_equation[dep_var]
                print("substitution: ",
                      free_var.getSymname(),
                      "=",
                      uj,
                      end=' ')
                #print "variables: ", uj_symbols, inv_transf_vars

            # Jacobian
            #J = sympy.Abs(sympy.diff(uj, dep_var.getSymname()))
            J = sympy.diff(uj, dep_var.getSymname())
            print(J.atoms())
            J_symbols = list(sorted(J.atoms(sympy.Symbol), key=str))
            if len(J_symbols) > 0:
                jacobian_vars = [self.sym_to_rv[s] for s in J_symbols]
                jacobian = my_lambdify(J_symbols, J, "numpy")
                jacobian = NDFun(len(jacobian_vars),
                                 jacobian_vars,
                                 jacobian,
                                 safe=True,
                                 abs=True)
            else:
                jacobian = NDConstFactor(abs(float(J)))
                jacobian_vars = []

            if params.models.debug_info:
                print(";  Jacobian=", J)
            #print "variables: ", J_symbols, jacobian_vars

            var_changes.append((uj, inv_transf, inv_transf_vars, jacobian))
        return var_changes, equation
Exemplo n.º 4
0
    def var_change_helper(self, free_var, dep_var):
        """Compute inverse transformation and Jacobian for substituting
        dep_var for free_var."""
        free_var = self.prepare_var(free_var)
        dep_var = self.prepare_var(dep_var)
        # inverve transformation
        equation = self.rv_to_equation[dep_var] - dep_var.getSymname()
        solutions = eq_solve(self.rv_to_equation[dep_var], dep_var.getSymname(), free_var.getSymname())
        var_changes = []
        for uj in solutions:
            # remove complex valued solutions
            vj = uj.atoms(sympy.Symbol)
            hvj = {}
            for v in vj:
                #print self.sym_to_rv[v].range()
                hvj[v]=self.sym_to_rv[v].range()[1]
            if len(solutions)>1 and not sympy.im(uj.subs(hvj))==0:
                continue
            uj_symbols = list(sorted(uj.atoms(sympy.Symbol), key = str))
            inv_transf = my_lambdify(uj_symbols, uj, "numpy")
            inv_transf_vars = [self.sym_to_rv[s] for s in uj_symbols]

            if params.models.debug_info:
                #print "vars to change: ", free_var.getSymname(), " <- ", dep_var.getSymname(), "=", self.rv_to_equation[dep_var]
                #print "equation: ", dep_var.getSymname(), "=", self.rv_to_equation[dep_var]
                print("substitution: ", free_var.getSymname(), "=", uj, end=' ')
                #print "variables: ", uj_symbols, inv_transf_vars

            # Jacobian
            #J = sympy.Abs(sympy.diff(uj, dep_var.getSymname()))
            J = sympy.diff(uj, dep_var.getSymname())
            print(J.atoms())
            J_symbols = list(sorted(J.atoms(sympy.Symbol), key = str))
            if len(J_symbols) > 0:
                jacobian_vars = [self.sym_to_rv[s] for s in J_symbols]
                jacobian = my_lambdify(J_symbols, J, "numpy")
                jacobian = NDFun(len(jacobian_vars), jacobian_vars, jacobian, safe = True, abs = True)
            else:
                jacobian = NDConstFactor(abs(float(J)))
                jacobian_vars = []

            if params.models.debug_info:
                print(";  Jacobian=", J)
            #print "variables: ", J_symbols, jacobian_vars

            var_changes.append((uj, inv_transf, inv_transf_vars, jacobian))
        return var_changes, equation
Exemplo n.º 5
0
 def solveCutsX(self, fun, ay, by):
     axc = eq_solve(fun, ay, self.symvars[0])[0]
     bxc = eq_solve(fun, by, self.symvars[0])[0]
     return (axc, bxc)
Exemplo n.º 6
0
 def solveCutsX(self, fun, ay, by):
     axc = eq_solve(fun, ay, self.symvars[0])[0]
     bxc = eq_solve(fun, by, self.symvars[0])[0]
     return (axc, bxc)