Exemplo n.º 1
0
Make a program that is able to solve a system of equations using the
Gauss-Seidel method.\
"""

redact_ex(EXERCISE_07, 7)

a = np.array([[1, 2, -1], [2, 4, 5], [3, -1, -2]], dtype=float)
b = np.array([[2], [25], [-5]], dtype=float)

a = a.reshape(len(a), len(a))
b = b.reshape(len(b), 1)
ab = np.concatenate((a, b), axis=1)

print("Matrix of coefficients A (given):", a, sep='\n\n', end='\n\n')
print("Vector of independent terms B (given):", b, sep='\n\n', end='\n\n')
print("Expanded matrix (AB):", ab, sep='\n\n', end='\n\n')

sols = gauss_seidel_solve(ab)
print("Obtained solutions:", sols, sep='\n\n', end='\n\n')
sols = deprox_arr(sols)
print("Fixed solutions:", sols, sep='\n\n', end='\n\n')
osols = check_sys_sols(sols, ab)
if osols is None:
    print("Obtained solutions were incorrect.")
    quit()
print("Ordered solutions:", osols, sep='\n\n', end='\n\n')
print("i.e.:",
      *("x_{i} = {sol_i}".format(i=i + 1, sol_i=osols[i])
        for i in range(len(osols))),
      sep='\n')
Exemplo n.º 2
0
from package import redact_ex

from package import \
    jacobi_eigenfind, \
    deprox_num, \
    deprox_arr

EXERCISE_01 = """\
Make a program that is able to compute the eigenvalues and eigenvectors of a
simetrical matrix using the Jacobi method.\
"""

redact_ex(EXERCISE_01, 1)

import numpy as np

mat = np.array([[3, -1, 0], [-1, 2, -1], [0, -1, 3]], dtype=float)
mat = mat.reshape(len(mat), len(mat))

d, v = jacobi_eigenfind(mat)

print("Matrix (M):", mat, sep='\n', end='\n\n')
print("Obtained eigencouples (\u03BB, v):",
    *[(deprox_num(d[i,i]), deprox_arr(v[:,i])) \
        for i in range(d.shape[0])], sep = '\n')