Exemplo n.º 1
0
 def linear_fc_quant(self,
                     activation_quant_type,
                     weight_quantize_type,
                     for_ci=True):
     main = fluid.Program()
     startup = fluid.Program()
     with fluid.program_guard(main, startup):
         loss = linear_fc(3)
         opt = fluid.optimizer.Adam(learning_rate=0.001)
         opt.minimize(loss)
     place = fluid.CPUPlace()
     graph = IrGraph(core.Graph(main.desc), for_test=False)
     transform_pass = QuantizationTransformPass(
         scope=fluid.global_scope(),
         place=place,
         activation_quantize_type=activation_quant_type,
         weight_quantize_type=weight_quantize_type)
     transform_pass.apply(graph)
     if not for_ci:
         marked_nodes = set()
         for op in graph.all_op_nodes():
             if op.name().find('quantize') > -1:
                 marked_nodes.add(op)
         graph.draw('.', 'quantize_fc_' + activation_quant_type,
                    marked_nodes)
     program = graph.to_program()
     self.check_program(program)
     val_graph = IrGraph(core.Graph(program.desc), for_test=False)
     if not for_ci:
         val_marked_nodes = set()
         for op in val_graph.all_op_nodes():
             if op.name().find('quantize') > -1:
                 val_marked_nodes.add(op)
         val_graph.draw('.', 'val_fc_' + activation_quant_type,
                        val_marked_nodes)
 def residual_block_quant(self, quant_type):
     main = fluid.Program()
     startup = fluid.Program()
     with fluid.program_guard(main, startup):
         loss = residual_block(2)
         opt = fluid.optimizer.Adam(learning_rate=0.001)
         opt.minimize(loss)
     place = fluid.CPUPlace()
     exe = fluid.Executor(place)
     graph = IrGraph(core.Graph(main.desc), for_test=False)
     transform_pass = QuantizationTransformPass(
         scope=fluid.global_scope(),
         place=place,
         activation_quantize_type=quant_type)
     transform_pass.apply(graph)
     marked_nodes = set()
     for op in graph.all_op_nodes():
         if op.name().find('quantize') > -1:
             marked_nodes.add(op)
     graph.draw('.', 'quantize_residual_' + quant_type, marked_nodes)
     program = graph.to_program()
     self.check_program(transform_pass, program)
     val_graph = IrGraph(core.Graph(program.desc), for_test=False)
     val_marked_nodes = set()
     for op in val_graph.all_op_nodes():
         if op.name().find('quantize') > -1:
             val_marked_nodes.add(op)
     val_graph.draw('.', 'val_residual_' + quant_type, val_marked_nodes)
Exemplo n.º 3
0
 def test_quant_sub_graphs(self, use_cuda=False):
     graph, sub_graphs = self.build_graph_with_sub_graph()
     place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
     transform_pass = QuantizationTransformPass(
         scope=fluid.global_scope(),
         place=place,
         activation_quantize_type='abs_max',
         weight_quantize_type='range_abs_max')
     Find_inserted_quant_op = False
     for sub_graph in sub_graphs:
         transform_pass.apply(sub_graph)
         for op in sub_graph.all_op_nodes():
             if 'quantize' in op.name():
                 Find_inserted_quant_op = True
     self.assertTrue(Find_inserted_quant_op)
Exemplo n.º 4
0
    def test_qat_acc(self):
        def _build_static_lenet(main, startup, is_test=False, seed=1000):
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    main.random_seed = seed
                    startup.random_seed = seed
                    img = fluid.layers.data(
                        name='image', shape=[1, 28, 28], dtype='float32')
                    label = fluid.layers.data(
                        name='label', shape=[1], dtype='int64')
                    prediction = StaticLenet(img)
                    if not is_test:
                        loss = fluid.layers.cross_entropy(
                            input=prediction, label=label)
                        avg_loss = fluid.layers.mean(loss)
                    else:
                        avg_loss = prediction
            return img, label, avg_loss

        reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=32, drop_last=True)
        weight_quantize_type = 'abs_max'
        activation_quant_type = 'moving_average_abs_max'
        param_init_map = {}
        seed = 1000
        lr = 0.001

        # imperative train
        _logger.info(
            "--------------------------dynamic graph qat--------------------------"
        )
        imperative_qat = ImperativeQuantAware(
            weight_quantize_type=weight_quantize_type,
            activation_quantize_type=activation_quant_type,
            quantizable_layer_type=[
                'Conv2D', 'Linear', 'ReLU', 'LeakyReLU', 'ReLU6', 'Tanh',
                'Swish'
            ])

        with fluid.dygraph.guard():
            np.random.seed(seed)
            fluid.default_main_program().random_seed = seed
            fluid.default_startup_program().random_seed = seed
            lenet = ImperativeLenet()
            fixed_state = {}
            for name, param in lenet.named_parameters():
                p_shape = param.numpy().shape
                p_value = param.numpy()
                if name.endswith("bias"):
                    value = np.zeros_like(p_value).astype('float32')
                else:
                    value = np.random.normal(
                        loc=0.0, scale=0.01, size=np.product(p_shape)).reshape(
                            p_shape).astype('float32')
                fixed_state[name] = value
                param_init_map[param.name] = value
            lenet.set_dict(fixed_state)

            imperative_qat.quantize(lenet)
            adam = AdamOptimizer(
                learning_rate=lr, parameter_list=lenet.parameters())
            dynamic_loss_rec = []
            lenet.train()
            for batch_id, data in enumerate(reader()):
                x_data = np.array([x[0].reshape(1, 28, 28)
                                   for x in data]).astype('float32')
                y_data = np.array(
                    [x[1] for x in data]).astype('int64').reshape(-1, 1)

                img = fluid.dygraph.to_variable(x_data)
                label = fluid.dygraph.to_variable(y_data)

                out = lenet(img)
                loss = fluid.layers.cross_entropy(out, label)
                avg_loss = fluid.layers.mean(loss)
                avg_loss.backward()
                adam.minimize(avg_loss)
                lenet.clear_gradients()
                dynamic_loss_rec.append(avg_loss.numpy()[0])
                if batch_id % 100 == 0:
                    _logger.info('{}: {}'.format('loss', avg_loss.numpy()))
                if batch_id > 500:
                    break
            lenet.eval()
        paddle.jit.save(
            layer=lenet,
            path="./dynamic_mnist/model",
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None, 1, 28, 28], dtype='float32')
            ])

        # static graph train
        _logger.info(
            "--------------------------static graph qat--------------------------"
        )
        static_loss_rec = []
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)

        main = fluid.Program()
        infer = fluid.Program()
        startup = fluid.Program()
        static_img, static_label, static_loss = _build_static_lenet(
            main, startup, False, seed)
        infer_img, _, infer_pre = _build_static_lenet(infer, startup, True,
                                                      seed)
        with fluid.unique_name.guard():
            with fluid.program_guard(main, startup):
                opt = AdamOptimizer(learning_rate=lr)
                opt.minimize(static_loss)

        scope = core.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)
        for param in main.all_parameters():
            param_tensor = scope.var(param.name).get_tensor()
            param_tensor.set(param_init_map[param.name], place)

        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
        infer_graph = IrGraph(core.Graph(infer.desc), for_test=True)
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quantize_type,
            quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'])
        add_quant_dequant_pass = AddQuantDequantPass(
            scope=scope,
            place=place,
            quantizable_op_type=[
                'relu', 'leaky_relu', 'relu6', 'tanh', 'swish'
            ])
        transform_pass.apply(main_graph)
        transform_pass.apply(infer_graph)
        add_quant_dequant_pass.apply(main_graph)
        add_quant_dequant_pass.apply(infer_graph)
        build_strategy = fluid.BuildStrategy()
        build_strategy.fuse_all_reduce_ops = False
        binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel(
            loss_name=static_loss.name, build_strategy=build_strategy)

        feeder = fluid.DataFeeder(
            feed_list=[static_img, static_label], place=place)
        with fluid.scope_guard(scope):
            for batch_id, data in enumerate(reader()):
                loss_v, = exe.run(binary,
                                  feed=feeder.feed(data),
                                  fetch_list=[static_loss])
                static_loss_rec.append(loss_v[0])
                if batch_id % 100 == 0:
                    _logger.info('{}: {}'.format('loss', loss_v))

        save_program = infer_graph.to_program()
        with fluid.scope_guard(scope):
            fluid.io.save_inference_model("./static_mnist", [infer_img.name],
                                          [infer_pre], exe, save_program)
        rtol = 1e-08
        atol = 1e-10
        for i, (loss_d,
                loss_s) in enumerate(zip(dynamic_loss_rec, static_loss_rec)):
            diff = np.abs(loss_d - loss_s)
            if diff > (atol + rtol * np.abs(loss_s)):
                _logger.info(
                    "diff({}) at {}, dynamic loss = {}, static loss = {}".
                    format(diff, i, loss_d, loss_s))
                break

        self.assertTrue(
            np.allclose(
                np.array(dynamic_loss_rec),
                np.array(static_loss_rec),
                rtol=rtol,
                atol=atol,
                equal_nan=True),
            msg='Failed to do the imperative qat.')
Exemplo n.º 5
0
def quant_aware(program,
                place,
                config=None,
                scope=None,
                for_test=False,
                weight_quantize_func=None,
                act_quantize_func=None,
                weight_preprocess_func=None,
                act_preprocess_func=None,
                optimizer_func=None,
                executor=None,
                return_program=False):
    """Add quantization  and dequantization operators to "program" 
    for quantization training or testing.

    Args:
        program(paddle.static.Program): training or testing ``program``.
        place(paddle.CPUPlace or paddle.CUDAPlace): This parameter represents 
            the executor run on which device.
        config(dict, optional): configs for quantization. if None, will use default config. 
            Default: None.
        scope(paddle.static.Scope): Scope records the mapping between variable names and variables, 
            similar to brackets in programming languages. Usually users can use 
            `paddle.static.global_scope <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_.              When ``None`` will use `paddle.static.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_ . Default: ``None``.
        for_test(bool): If the 'program' parameter is a test program, this parameter should be set to ``True``. 
            Otherwise, set to ``False``.Default: False
       weight_quantize_func(function): Function that defines how to quantize weight. Using this
                can quickly test if user's quantization method works or not. In this function, user should
                both define quantization function and dequantization function, that is, the function's input
                is non-quantized weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'.
                Default is None.
        act_quantize_func(function): Function that defines how to quantize activation. Using this
                can quickly test if user's quantization method works or not. In this function, user should
                both define quantization and dequantization process, that is, the function's input
                is non-quantized activation and function returns dequantized activation. If None, will use 
                quantization op defined by 'activation_quantize_type'.
                Default is None.
        weight_preprocess_func(function): Function that defines how to preprocess weight before quantization. Using this
                can quickly test if user's preprocess method works or not. The function's input
                is non-quantized weight and function returns processed weight to be quantized. If None, the weight will
                be quantized directly.
                Default is None.
        act_preprocess_func(function): Function that defines how to preprocess activation before quantization. Using this
                can quickly test if user's preprocess method works or not. The function's input
                is non-quantized activation and function returns processed activation to be quantized. If None, the activation will
                be quantized directly.
                Default is None.
        optimizer_func(function): Fuction return a optimizer. When 'is_test' is False and user want to use self-defined 
            quantization function and preprocess function, this function must be set. Default is None.
        exe(paddle.static.Executor): If user want to use self-defined quantization function and preprocess function, exe must be set for
                initialization. Default is None.
        return_program(bool): If user want return value is a Program rather than Compiled Program, This argument should be set True.
                Default is False.
    Returns:
        paddle.static.CompiledProgram | paddle.static.Program: Program with quantization and dequantization ``operators``
    """

    scope = paddle.static.global_scope() if not scope else scope
    if config is None:
        config = _quant_config_default
    else:
        assert isinstance(config, dict), "config must be dict"
        config = _parse_configs(config)
    _logger.info("quant_aware config {}".format(config))

    main_graph = IrGraph(core.Graph(program.desc), for_test=for_test)

    transform_pass_ops = []
    quant_dequant_ops = []
    for op_type in config['quantize_op_types']:
        if op_type in TRANSFORM_PASS_OP_TYPES:
            transform_pass_ops.append(op_type)
        elif op_type in QUANT_DEQUANT_PASS_OP_TYPES:
            quant_dequant_ops.append(op_type)
    if len(transform_pass_ops) > 0:
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            weight_bits=config['weight_bits'],
            activation_bits=config['activation_bits'],
            activation_quantize_type=config['activation_quantize_type'],
            weight_quantize_type=config['weight_quantize_type'],
            window_size=config['window_size'],
            moving_rate=config['moving_rate'],
            quantizable_op_type=transform_pass_ops,
            skip_pattern=config['not_quant_pattern'],
            weight_quantize_func=weight_quantize_func,
            act_quantize_func=act_quantize_func,
            weight_preprocess_func=weight_preprocess_func,
            act_preprocess_func=act_preprocess_func,
            optimizer_func=optimizer_func,
            executor=executor)

        transform_pass.apply(main_graph)

    if len(quant_dequant_ops) > 0:
        quant_dequant_pass = AddQuantDequantPass(
            scope=scope,
            place=place,
            moving_rate=config['moving_rate'],
            quant_bits=config['activation_bits'],
            skip_pattern=config['not_quant_pattern'],
            quantizable_op_type=quant_dequant_ops)
        quant_dequant_pass.apply(main_graph)

    out_scale_training_pass = OutScaleForTrainingPass(
        scope=scope, place=place, moving_rate=config['moving_rate'])
    out_scale_training_pass.apply(main_graph)

    if (weight_preprocess_func is not None
            or act_preprocess_func is not None) and not for_test:
        _logger.info(
            "When a preprocess_func is used in quant_aware, Need to save a mapping table to match variable names in the convert phase."
        )
        _logger.info(
            "The mapping table is saved as '{}'.".format(VARS_MAPPING_TABLE))
        save_dict(main_graph.out_node_mapping_table)

    if for_test or return_program:
        quant_program = main_graph.to_program()
    else:
        quant_program = paddle.static.CompiledProgram(main_graph.graph)
    return quant_program
Exemplo n.º 6
0
    def freeze_graph(self,
                     use_cuda,
                     seed,
                     activation_quant_type,
                     weight_quant_type='abs_max',
                     for_ci=True,
                     quant_skip_pattern='skip_quant'):
        def build_program(main, startup, is_test):
            main.random_seed = seed
            startup.random_seed = seed
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    img = fluid.layers.data(
                        name='image', shape=[1, 28, 28], dtype='float32')
                    label = fluid.layers.data(
                        name='label', shape=[1], dtype='int64')
                    loss = conv_net(img, label, quant_skip_pattern)
                    if not is_test:
                        opt = fluid.optimizer.Adam(learning_rate=0.001)
                        opt.minimize(loss)
            return [img, label], loss

        random.seed(0)
        np.random.seed(0)

        main = fluid.Program()
        startup = fluid.Program()
        test_program = fluid.Program()
        feeds, loss = build_program(main, startup, False)
        build_program(test_program, startup, True)
        test_program = test_program.clone(for_test=True)
        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
        test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quant_type,
            skip_pattern=quant_skip_pattern)
        transform_pass.apply(main_graph)
        transform_pass.apply(test_graph)
        dev_name = '_gpu_' if use_cuda else '_cpu_'
        if not for_ci:
            marked_nodes = set()
            for op in main_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            main_graph.draw('.', 'main' + dev_name + activation_quant_type + '_'
                            + weight_quant_type, marked_nodes)
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'test' + dev_name + activation_quant_type + '_'
                            + weight_quant_type, marked_nodes)

        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
        quantized_test_program = test_graph.to_program()
        iters = 5
        batch_size = 8

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=500),
            batch_size=batch_size)
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)
        with fluid.scope_guard(scope):
            for _ in range(iters):
                data = next(train_reader())
                loss_v = exe.run(binary,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])
                if not for_ci:
                    print('{}: {}'.format('loss' + dev_name +
                                          activation_quant_type + '_' +
                                          weight_quant_type, loss_v))

        test_data = next(test_reader())
        with fluid.program_guard(quantized_test_program):
            w_var = fluid.framework._get_var('conv2d_1.w_0.quantized',
                                             quantized_test_program)
        # Testing
        with fluid.scope_guard(scope):
            test_loss1, w_quant = exe.run(program=quantized_test_program,
                                          feed=feeder.feed(test_data),
                                          fetch_list=[loss, w_var])

        # Freeze graph for inference, but the weight of fc/conv is still float type.
        freeze_pass = QuantizationFreezePass(
            scope=scope, place=place, weight_quantize_type=weight_quant_type)
        freeze_pass.apply(test_graph)
        if not for_ci:
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'test_freeze' + dev_name +
                            activation_quant_type + '_' + weight_quant_type,
                            marked_nodes)

        server_program = test_graph.to_program()
        with fluid.scope_guard(scope):
            test_loss2, = exe.run(program=server_program,
                                  feed=feeder.feed(test_data),
                                  fetch_list=[loss])
        self.assertAlmostEqual(test_loss1, test_loss2, delta=5e-3)
        if not for_ci:
            print(
                '{}: {}'.format('test_loss1' + dev_name + activation_quant_type
                                + '_' + weight_quant_type, test_loss1))
            print(
                '{}: {}'.format('test_loss2' + dev_name + activation_quant_type
                                + '_' + weight_quant_type, test_loss2))
        w_freeze = np.array(scope.find_var('conv2d_1.w_0').get_tensor())
        # Maybe failed, this is due to the calculation precision
        # self.assertAlmostEqual(np.sum(w_freeze), np.sum(w_quant))
        if not for_ci:
            print('{}: {}'.format('w_freeze' + dev_name + activation_quant_type
                                  + '_' + weight_quant_type, np.sum(w_freeze)))
            print('{}: {}'.format('w_quant' + dev_name + activation_quant_type +
                                  '_' + weight_quant_type, np.sum(w_quant)))

        # Convert parameter to 8-bit.
        convert_int8_pass = ConvertToInt8Pass(scope=scope, place=place)
        convert_int8_pass.apply(test_graph)
        if not for_ci:
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'test_int8' + dev_name + activation_quant_type
                            + '_' + weight_quant_type, marked_nodes)
        server_program_int8 = test_graph.to_program()
        # Save the 8-bit parameter and model file.
        with fluid.scope_guard(scope):
            fluid.io.save_inference_model(
                'server_int8' + dev_name + activation_quant_type + '_' +
                weight_quant_type, ['image', 'label'], [loss], exe,
                server_program_int8)
            # Test whether the 8-bit parameter and model file can be loaded successfully.
            [infer, feed, fetch] = fluid.io.load_inference_model(
                'server_int8' + dev_name + activation_quant_type + '_' +
                weight_quant_type, exe)
        # Check the loaded 8-bit weight.
        w_8bit = np.array(scope.find_var('conv2d_1.w_0.int8').get_tensor())
        self.assertEqual(w_8bit.dtype, np.int8)
        self.assertEqual(np.sum(w_8bit), np.sum(w_freeze))
        if not for_ci:
            print('{}: {}'.format('w_8bit' + dev_name + activation_quant_type +
                                  '_' + weight_quant_type, np.sum(w_8bit)))
            print('{}: {}'.format('w_freeze' + dev_name + activation_quant_type
                                  + '_' + weight_quant_type, np.sum(w_freeze)))

        mobile_pass = TransformForMobilePass()
        mobile_pass.apply(test_graph)
        if not for_ci:
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'test_mobile' + dev_name +
                            activation_quant_type + '_' + weight_quant_type,
                            marked_nodes)

        mobile_program = test_graph.to_program()
        with fluid.scope_guard(scope):
            fluid.io.save_inference_model(
                'mobile_int8' + dev_name + activation_quant_type + '_' +
                weight_quant_type, ['image', 'label'], [loss], exe,
                mobile_program)
Exemplo n.º 7
0
    def check_output_with_option(self,
                                 use_gpu,
                                 atol=1e-5,
                                 flatten=False,
                                 quant=False,
                                 rtol=1e-5):
        '''
        Check whether calculating on CPU and GPU, enable TensorRT 
        or disable TensorRT, enable MKLDNN or disable MKLDNN 
        are all the same. 
        '''
        place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
        executor = fluid.Executor(place)
        scope = fluid.Scope()
        device = "GPU" if use_gpu else "CPU"

        with fluid.scope_guard(scope):
            executor.run(self.startup_program)
            executor.run(self.test_startup_program)
        main_graph = IrGraph(core.Graph(self.main_program.desc),
                             for_test=False)
        test_graph = IrGraph(core.Graph(self.test_main_program.desc),
                             for_test=True)

        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=self.activation_quantize_type,
            weight_quantize_type=self.weight_quantize_type)
        transform_pass.apply(main_graph)
        transform_pass.apply(test_graph)

        add_quant_dequant_pass = AddQuantDequantPass(scope=scope, place=place)
        add_quant_dequant_pass.apply(main_graph)
        add_quant_dequant_pass.apply(test_graph)

        scale_training_pass = OutScaleForTrainingPass(scope=scope, place=place)
        scale_training_pass.apply(main_graph)

        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        build_strategy.fuse_all_reduce_ops = False
        binary = fluid.CompiledProgram(main_graph.graph)

        iters = 10
        batch_size = 1
        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
                                    batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=[self.data, self.label],
                                  place=place)
        with fluid.scope_guard(scope):
            for _ in range(iters):
                data = next(train_reader())
                loss_v = executor.run(binary,
                                      feed=feeder.feed(data),
                                      fetch_list=[self.loss])

        scale_inference_pass = OutScaleForInferencePass(scope=scope)
        scale_inference_pass.apply(test_graph)

        # Freeze graph for inference, but the weight of fc/conv is still float type.
        freeze_pass = QuantizationFreezePass(
            scope=scope,
            place=place,
            weight_quantize_type=self.weight_quantize_type)
        freeze_pass.apply(test_graph)

        self.main_program = test_graph.to_program()

        with fluid.scope_guard(scope):
            self.main_program = self._normalize_program(
                self.main_program, self.data, self.fetch_list)

        self._save_models(self.path, list(self.feeds.keys()), self.fetch_list,
                          executor, self.main_program, scope)

        paddle_outs = self._get_paddle_outs(self.feeds, self.fetch_list,
                                            executor, self.main_program, scope)
        inference_outs = self._get_inference_outs(
            self._get_analysis_config(use_gpu=use_gpu))

        # Check whether the results calculated on CPU and on GPU are the same.
        self.assertTrue(
            len(paddle_outs) == len(inference_outs),
            "The number of outputs is different between inference and training forward at {}"
            .format(device))

        for out, inference_out in zip(paddle_outs, inference_outs):
            paddle_out = np.array(out)

            if flatten:
                paddle_out = paddle_out.flatten()
                inference_out = inference_out.flatten()

            self.assertTrue(
                np.allclose(paddle_out, inference_out, atol=atol),
                "Output has diff between inference and training forward at {} "
                .format(device))

        # Check whether the trt results and the GPU results are the same.
        if use_gpu and self.enable_trt:
            tensorrt_outputs = self._get_inference_outs(
                self._get_analysis_config(use_gpu=use_gpu,
                                          use_trt=self.enable_trt))

            if self.trt_parameters.use_static:
                #deserialize
                tensorrt_outputs = self._get_inference_outs(
                    self._get_analysis_config(use_gpu=use_gpu,
                                              use_trt=self.enable_trt))

            self.assertTrue(
                len(tensorrt_outputs) == len(paddle_outs),
                "The number of outputs is different between GPU and TensorRT. "
            )

            for paddle_out, tensorrt_output in zip(paddle_outs,
                                                   tensorrt_outputs):
                paddle_out = np.array(paddle_out)

                if flatten:
                    paddle_out = paddle_out.flatten()
                    tensorrt_output = tensorrt_output.flatten()

                self.assertTrue(
                    np.allclose(paddle_out,
                                tensorrt_output,
                                rtol=rtol,
                                atol=atol),
                    "Output has diff between GPU and TensorRT. ")

        # Check whether the mkldnn results and the CPU results are the same.
        if (not use_gpu) and self.enable_mkldnn:
            mkldnn_outputs = self._get_inference_outs(
                self._get_analysis_config(use_gpu=use_gpu,
                                          use_mkldnn=self.enable_mkldnn))

            self.assertTrue(
                len(paddle_outs) == len(mkldnn_outputs),
                "The number of outputs is different between CPU and MKLDNN. ")

            if self.enable_mkldnn_bfloat16:
                atol = 0.01
            for paddle_out, mkldnn_output in zip(paddle_outs, mkldnn_outputs):
                self.assertTrue(
                    np.allclose(np.array(paddle_out), mkldnn_output,
                                atol=atol),
                    "Output has diff between CPU and MKLDNN. ")
Exemplo n.º 8
0
    def quantization_scale(self,
                           use_cuda,
                           seed,
                           activation_quant_type,
                           weight_quant_type='abs_max',
                           for_ci=False):
        def build_program(main, startup, is_test):
            main.random_seed = seed
            startup.random_seed = seed
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    img = fluid.layers.data(name='image',
                                            shape=[1, 28, 28],
                                            dtype='float32')
                    label = fluid.layers.data(name='label',
                                              shape=[1],
                                              dtype='int64')
                    loss = residual_block(img, label, 1)
                    if not is_test:
                        opt = fluid.optimizer.Adam(learning_rate=0.0001)
                        opt.minimize(loss)
            return [img, label], loss

        random.seed(0)
        np.random.seed(0)

        main = fluid.Program()
        startup = fluid.Program()
        test_program = fluid.Program()
        feeds, loss = build_program(main, startup, False)
        build_program(test_program, startup, True)
        test_program = test_program.clone(for_test=True)
        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
        test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)

        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quant_type)
        transform_pass.apply(main_graph)
        transform_pass.apply(test_graph)

        add_quant_dequant_pass = AddQuantDequantPass(scope=scope, place=place)
        add_quant_dequant_pass.apply(main_graph)
        add_quant_dequant_pass.apply(test_graph)

        scale_training_pass = OutScaleForTrainingPass(scope=scope, place=place)
        scale_training_pass.apply(main_graph)

        dev_name = '_gpu' if use_cuda else '_cpu'
        if not for_ci:
            marked_nodes = set()
            for op in main_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            main_graph.draw('.', 'main_scale' + dev_name, marked_nodes)
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'test_scale' + dev_name, marked_nodes)

        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        build_strategy.fuse_all_reduce_ops = False
        binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
        iters = 5
        batch_size = 8

        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
                                    batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)
        with fluid.scope_guard(scope):
            for _ in range(iters):
                data = next(train_reader())
                loss_v = exe.run(binary,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])
                if not for_ci:
                    print('{}: {}'.format('loss' + dev_name, loss_v))

        scale_inference_pass = OutScaleForInferencePass(scope=scope)
        scale_inference_pass.apply(test_graph)

        # Freeze graph for inference, but the weight of fc/conv is still float type.
        freeze_pass = QuantizationFreezePass(
            scope=scope, place=place, weight_quantize_type=weight_quant_type)
        freeze_pass.apply(test_graph)
        server_program = test_graph.to_program()

        if not for_ci:
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'quant_scale' + dev_name, marked_nodes)

        with open('quant_scale_model' + dev_name + '.txt', 'w') as f:
            f.write(str(server_program))

        with fluid.scope_guard(scope):
            fluid.io.save_inference_model('quant_scale_model' + dev_name,
                                          ['image', 'label'], [loss], exe,
                                          server_program)
Exemplo n.º 9
0
    def check_output_with_option(self,
                                 use_gpu,
                                 atol=1e-5,
                                 flatten=False,
                                 quant=False):
        '''
        Check whether calculating on CPU and GPU, enable TensorRT 
        or disable TensorRT, enable MKLDNN or disable MKLDNN 
        are all the same. 
        '''
        place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
        executor = fluid.Executor(place)
        scope = fluid.Scope()
        device = "GPU" if use_gpu else "CPU"
        with fluid.scope_guard(scope):
            executor.run(self.startup_program)

        if quant:
            main_graph = IrGraph(core.Graph(self.main_program.desc),
                                 for_test=True)

            transform_pass = QuantizationTransformPass(
                scope=scope,
                place=place,
                activation_quantize_type=self.activation_quant_type,
                weight_quantize_type=self.weight_quant_type,
                quantizable_op_type=[
                    'conv2d', 'mul', 'depthwise_conv2d', 'conv2d_transpose'
                ])
            transform_pass.apply(main_graph)
            weight_scale_map = {
                "conv2d": "conv2d_0.w_0.scale",
                "mul": "fc_0.w_0.scale"
            }

            weight_scale_tensor = scope.var(
                weight_scale_map[self.quantized_op_type]).get_tensor()
            weight_scale = np.ones(self.channels).astype("float32")
            weight_scale_tensor.set(weight_scale, place)

            op_nodes = main_graph.all_op_nodes()
            for op_node in op_nodes:
                if op_node.name() in [self.quantized_op_type, "relu"]:
                    op_node.op()._set_attr("out_threshold", 0.5)

            with fluid.scope_guard(scope):
                executor.run(program=self.main_program,
                             feed=self.feeds,
                             fetch_list=self.fetch_list)

            freeze_pass = QuantizationFreezePass(
                scope=scope,
                place=place,
                weight_quantize_type=self.weight_quant_type)
            freeze_pass.apply(main_graph)
            self.main_program = main_graph.to_program()

        outs = self._save_models(executor, self.main_program, scope)

        analysis_outputs = self._get_analysis_outputs(
            self._get_analysis_config(use_gpu=use_gpu))

        # Check whether the results calculated on CPU and on GPU are the same.
        self.assertTrue(
            len(outs) == len(analysis_outputs),
            "The number of outputs is different between inference and training forward at {}"
            .format(device))

        for out, analysis_output in zip(outs, analysis_outputs):
            out = np.array(out)
            if flatten:
                out = out.flatten()
                analysis_output = analysis_output.flatten()

            self.assertTrue(
                np.allclose(out, analysis_output, atol=atol),
                "Output has diff between inference and training forward at {} "
                .format(device))

        # Check whether the trt results and the GPU results are the same.
        if use_gpu and self.enable_trt:
            tensorrt_outputs = self._get_analysis_outputs(
                self._get_analysis_config(use_gpu=use_gpu,
                                          use_trt=self.enable_trt))

            if self.trt_parameters.use_static:
                #deserialize
                tensorrt_outputs = self._get_analysis_outputs(
                    self._get_analysis_config(use_gpu=use_gpu,
                                              use_trt=self.enable_trt))

            self.assertTrue(
                len(tensorrt_outputs) == len(outs),
                "The number of outputs is different between GPU and TensorRT. "
            )

            for out, tensorrt_output in zip(outs, tensorrt_outputs):
                out = np.array(out)
                if flatten:
                    out = out.flatten()
                    tensorrt_output = tensorrt_output.flatten()

                self.assertTrue(np.allclose(out, tensorrt_output, atol=atol),
                                "Output has diff between GPU and TensorRT. ")

        # Check whether the mkldnn results and the CPU results are the same.
        if (not use_gpu) and self.enable_mkldnn:
            mkldnn_outputs = self._get_analysis_outputs(
                self._get_analysis_config(use_gpu=use_gpu,
                                          use_mkldnn=self.enable_mkldnn))

            self.assertTrue(
                len(outs) == len(mkldnn_outputs),
                "The number of outputs is different between CPU and MKLDNN. ")

            if self.enable_mkldnn_bfloat16:
                atol = 0.01
            for out, mkldnn_output in zip(outs, mkldnn_outputs):
                self.assertTrue(
                    np.allclose(np.array(out), mkldnn_output, atol=atol),
                    "Output has diff between CPU and MKLDNN. ")
Exemplo n.º 10
0
def train(args):
    # parameters from arguments
    model_name = args.model
    pretrained_fp32_model = args.pretrained_fp32_model
    checkpoint = args.checkpoint
    model_save_dir = args.model_save_dir
    data_dir = args.data_dir
    activation_quant_type = args.act_quant_type
    weight_quant_type = args.wt_quant_type
    print("Using %s as the actiavtion quantize type." % activation_quant_type)
    print("Using %s as the weight quantize type." % weight_quant_type)

    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    test_prog = fluid.Program()

    _, _, train_py_reader, train_cost, train_acc1, train_acc5, global_lr = build_program(
        is_train=True,
        main_prog=train_prog,
        startup_prog=startup_prog,
        args=args)
    image, out, test_py_reader, test_cost, test_acc1, test_acc5 = build_program(
        is_train=False,
        main_prog=test_prog,
        startup_prog=startup_prog,
        args=args)
    test_prog = test_prog.clone(for_test=True)

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_prog)
    main_graph = IrGraph(core.Graph(train_prog.desc), for_test=False)
    test_graph = IrGraph(core.Graph(test_prog.desc), for_test=True)

    if pretrained_fp32_model:
        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_fp32_model, var.name))
        fluid.io.load_vars(
            exe, pretrained_fp32_model, main_program=train_prog, predicate=if_exist)

    if args.use_gpu:
        visible_device = os.getenv('CUDA_VISIBLE_DEVICES')
        if visible_device:
            device_num = len(visible_device.split(','))
        else:
            device_num = subprocess.check_output(
                ['nvidia-smi', '-L']).decode().count('\n')
    else:
        device_num = 1

    train_batch_size = args.batch_size / device_num
    test_batch_size = 1 if activation_quant_type == 'abs_max' else 8
    train_reader = paddle.batch(
        reader.train(data_dir=data_dir), batch_size=train_batch_size, drop_last=True)
    test_reader = paddle.batch(reader.val(data_dir=data_dir), batch_size=test_batch_size)

    train_py_reader.decorate_paddle_reader(train_reader)
    test_py_reader.decorate_paddle_reader(test_reader)

    train_fetch_list = [train_cost.name, train_acc1.name, train_acc5.name, global_lr.name]
    test_fetch_list = [test_cost.name, test_acc1.name, test_acc5.name]

    # 1. Make some quantization transforms in the graph before training and testing.
    # According to the weight and activation quantization type, the graph will be added
    # some fake quantize operators and fake dequantize operators.
    transform_pass = QuantizationTransformPass(
        scope=fluid.global_scope(), place=place,
        activation_quantize_type=activation_quant_type,
        weight_quantize_type=weight_quant_type)
    transform_pass.apply(main_graph)
    transform_pass.apply(test_graph)

    if checkpoint:
        load_persistable_nodes(exe, checkpoint, main_graph)

    build_strategy = fluid.BuildStrategy()
    build_strategy.memory_optimize = False
    build_strategy.enable_inplace = False
    build_strategy.fuse_all_reduce_ops = False
    binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel(
        loss_name=train_cost.name, build_strategy=build_strategy)
    test_prog = test_graph.to_program()
    params = models.__dict__[args.model]().params
    for pass_id in range(params["num_epochs"]):

        train_py_reader.start()

        train_info = [[], [], []]
        test_info = [[], [], []]
        train_time = []
        batch_id = 0
        try:
            while True:
                t1 = time.time()
                loss, acc1, acc5, lr = exe.run(binary, fetch_list=train_fetch_list)
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(np.array(loss))
                acc1 = np.mean(np.array(acc1))
                acc5 = np.mean(np.array(acc5))
                train_info[0].append(loss)
                train_info[1].append(acc1)
                train_info[2].append(acc5)
                lr = np.mean(np.array(lr))
                train_time.append(period)
                if batch_id % 10 == 0:
                    print("Pass {0}, trainbatch {1}, loss {2}, \
                        acc1 {3}, acc5 {4}, lr {5}, time {6}"
                          .format(pass_id, batch_id, loss, acc1, acc5, "%.6f" %
                                  lr, "%2.2f sec" % period))
                    sys.stdout.flush()
                batch_id += 1
        except fluid.core.EOFException:
            train_py_reader.reset()

        train_loss = np.array(train_info[0]).mean()
        train_acc1 = np.array(train_info[1]).mean()
        train_acc5 = np.array(train_info[2]).mean()

        test_py_reader.start()

        test_batch_id = 0
        try:
            while True:
                t1 = time.time()
                loss, acc1, acc5 = exe.run(program=test_prog,
                                           fetch_list=test_fetch_list)
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(loss)
                acc1 = np.mean(acc1)
                acc5 = np.mean(acc5)
                test_info[0].append(loss)
                test_info[1].append(acc1)
                test_info[2].append(acc5)
                if test_batch_id % 10 == 0:
                    print("Pass {0},testbatch {1},loss {2}, \
                        acc1 {3},acc5 {4},time {5}"
                          .format(pass_id, test_batch_id, loss, acc1, acc5,
                                  "%2.2f sec" % period))
                    sys.stdout.flush()
                test_batch_id += 1
        except fluid.core.EOFException:
            test_py_reader.reset()

        test_loss = np.array(test_info[0]).mean()
        test_acc1 = np.array(test_info[1]).mean()
        test_acc5 = np.array(test_info[2]).mean()

        print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, "
              "test_loss {4}, test_acc1 {5}, test_acc5 {6}".format(
                  pass_id, train_loss, train_acc1, train_acc5, test_loss,
                  test_acc1, test_acc5))
        sys.stdout.flush()

        save_checkpoint_path = os.path.join(model_save_dir,  model_name, str(pass_id))
        if not os.path.isdir(save_checkpoint_path):
            os.makedirs(save_checkpoint_path)
        save_persistable_nodes(exe, save_checkpoint_path, main_graph)

    model_path = os.path.join(model_save_dir, model_name, args.act_quant_type)
    float_path = os.path.join(model_path, 'float')
    int8_path = os.path.join(model_path, 'int8')
    mobile_path = os.path.join(model_path, 'mobile')
    if not os.path.isdir(model_path):
        os.makedirs(model_path)

    # 2. Freeze the graph after training by adjusting the quantize
    # operators' order for the inference.
    freeze_pass = QuantizationFreezePass(
        scope=fluid.global_scope(),
        place=place,
        weight_quantize_type=weight_quant_type)
    freeze_pass.apply(test_graph)
    server_program = test_graph.to_program()
    fluid.io.save_inference_model(
        dirname=float_path,
        feeded_var_names=[image.name],
        target_vars=[out], executor=exe,
        main_program=server_program)

    # 3. Convert the weights into int8_t type.
    # (This step is optional.)
    convert_int8_pass = ConvertToInt8Pass(scope=fluid.global_scope(), place=place)
    convert_int8_pass.apply(test_graph)
    server_int8_program = test_graph.to_program()
    fluid.io.save_inference_model(
        dirname=int8_path,
        feeded_var_names=[image.name],
        target_vars=[out], executor=exe,
        main_program=server_int8_program)

    # 4. Convert the freezed graph for paddle-mobile execution.
    # (This step is optional.)
    mobile_pass = TransformForMobilePass()
    mobile_pass.apply(test_graph)
    mobile_program = test_graph.to_program()
    fluid.io.save_inference_model(
        dirname=mobile_path,
        feeded_var_names=[image.name],
        target_vars=[out], executor=exe,
        main_program=mobile_program)
Exemplo n.º 11
0
    def quantization_scale(self,
                           use_cuda,
                           seed,
                           activation_quant_type,
                           weight_quant_type='abs_max',
                           for_ci=False,
                           act_preprocess_func=None,
                           weight_preprocess_func=None,
                           act_quantize_func=None,
                           weight_quantize_func=None):
        def build_program(main, startup, is_test):
            main.random_seed = seed
            startup.random_seed = seed
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    img = fluid.layers.data(name='image',
                                            shape=[1, 28, 28],
                                            dtype='float32')
                    img.stop_gradient = False
                    label = fluid.layers.data(name='label',
                                              shape=[1],
                                              dtype='int64')
                    loss = conv_net(img, label)
                    if not is_test:
                        opt = fluid.optimizer.SGD(learning_rate=0.0001)
                        opt.minimize(loss)
            return [img, label], loss

        def get_optimizer():
            return fluid.optimizer.MomentumOptimizer(0.0001, 0.9)

        def load_dict():
            with open('mapping_table_for_saving_inference_model', 'r') as file:
                data = file.read()
                data = json.loads(data)
                return data

        def save_dict(Dict):
            with open('mapping_table_for_saving_inference_model', 'w') as file:
                file.write(json.dumps(Dict))

        random.seed(0)
        np.random.seed(0)

        main = fluid.Program()
        startup = fluid.Program()
        test_program = fluid.Program()
        feeds, loss = build_program(main, startup, False)
        build_program(test_program, startup, True)
        test_program = test_program.clone(for_test=True)
        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
        test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)
        train_transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quant_type,
            act_preprocess_func=act_preprocess_func,
            weight_preprocess_func=weight_preprocess_func,
            act_quantize_func=act_quantize_func,
            weight_quantize_func=weight_quantize_func,
            optimizer_func=get_optimizer,
            executor=exe)
        train_transform_pass.apply(main_graph)
        test_transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quant_type,
            act_preprocess_func=act_preprocess_func,
            weight_preprocess_func=weight_preprocess_func,
            act_quantize_func=act_quantize_func,
            weight_quantize_func=weight_quantize_func,
            optimizer_func=get_optimizer,
            executor=exe)

        test_transform_pass.apply(test_graph)
        save_dict(test_graph.out_node_mapping_table)

        add_quant_dequant_pass = AddQuantDequantPass(scope=scope, place=place)
        add_quant_dequant_pass.apply(main_graph)
        add_quant_dequant_pass.apply(test_graph)

        scale_training_pass = OutScaleForTrainingPass(scope=scope, place=place)
        scale_training_pass.apply(main_graph)

        dev_name = '_gpu' if use_cuda else '_cpu'

        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        build_strategy.fuse_all_reduce_ops = False
        binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
        iters = 5
        batch_size = 8

        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
                                    batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)
        with fluid.scope_guard(scope):
            for _ in range(iters):
                data = next(train_reader())
                loss_v = exe.run(binary,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])

        out_scale_infer_pass = OutScaleForInferencePass(scope=scope)
        out_scale_infer_pass.apply(test_graph)

        freeze_pass = QuantizationFreezePass(
            scope=scope,
            place=place,
            weight_bits=8,
            activation_bits=8,
            weight_quantize_type=weight_quant_type)

        mapping_table = load_dict()
        test_graph.out_node_mapping_table = mapping_table
        if act_quantize_func == None and weight_quantize_func == None:
            freeze_pass.apply(test_graph)
    def mkldnn_based_freeze_graph(self,
                                  use_cuda,
                                  seed,
                                  activation_quant_type,
                                  weight_quant_type='abs_max',
                                  quant_perf=False,
                                  for_ci=False):
        random.seed(0)
        np.random.seed(0)

        main = fluid.Program()
        startup = fluid.Program()
        test_program = fluid.Program()
        feeds, loss = self.build_program(main, startup, False, seed)
        self.build_program(test_program, startup, True, seed)
        test_program = test_program.clone(for_test=True)
        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
        test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)
        # Apply the QuantizationTransformPass
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quant_type)
        transform_pass.apply(main_graph)
        transform_pass.apply(test_graph)

        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
        quantized_test_program = test_graph.to_program()
        iters = 5
        batch_size = 8

        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
                                    batch_size=batch_size)
        test_reader = paddle.batch(paddle.dataset.mnist.test(),
                                   batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)

        # Training the model to get the weights value
        with fluid.scope_guard(scope):
            for _ in range(iters):
                data = next(train_reader())
                loss_v = exe.run(binary,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])

        # Freeze graph for inference, but the weight of fc/conv is still float type.
        freeze_pass = QuantizationFreezePass(
            scope=scope, place=place, weight_quantize_type=weight_quant_type)
        freeze_pass.apply(test_graph)

        # Transform quantized graph for MKL-DNN INT8 inference
        mkldnn_int8_pass = QuantInt8MkldnnPass(_scope=scope, _place=place)
        mkldnn_int8_pass.apply(test_graph)
        dev_name = '_cpu_'
        if not for_ci:
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw(
                '.', 'test_mkldnn' + dev_name + activation_quant_type + '_' +
                weight_quant_type, marked_nodes)
        mkldnn_program = test_graph.to_program()

        # Check the transformation weights of conv2d and mul
        conv_w_mkldnn = np.array(scope.find_var('conv2d_1.w_0').get_tensor())
        mul_w_mkldnn = np.array(scope.find_var('fc_0.w_0').get_tensor())
        # Check if weights are still integer
        self.assertFalse(self.isinteger(np.sum(conv_w_mkldnn)))
        self.assertFalse(self.isinteger(np.sum(mul_w_mkldnn)))

        # Check if the conv2d output and mul output are correctly linked to fake_dequantize's
        # output
        self.check_program(mkldnn_program)
        if not for_ci:
            print('{}: {}'.format(
                'w_mkldnn' + dev_name + activation_quant_type + '_' +
                weight_quant_type, np.sum(w_mkldnn)))
Exemplo n.º 13
0
def quant_aware(program, place, config=None, scope=None, for_test=False):
    """Add quantization  and dequantization operators to "program" 
    for quantization training or testing.

    Args:
        program(fluid.Program): training or testing ``program``.
        place(fluid.CPUPlace or fluid.CUDAPlace): This parameter represents 
            the executor run on which device.
        config(dict, optional): configs for quantization. if None, will use default config. 
            Default: None.
        scope(fluid.Scope): Scope records the mapping between variable names and variables, 
            similar to brackets in programming languages. Usually users can use 
            `fluid.global_scope <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_.              When ``None`` will use `fluid.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_ . Default: ``None``.
        for_test(bool): If the 'program' parameter is a test program, this parameter should be set to ``True``. 
            Otherwise, set to ``False``.Default: False
    
    Returns:
        fluid.CompiledProgram | fluid.Program: Program with quantization and dequantization ``operators``
    """

    scope = fluid.global_scope() if not scope else scope
    if config is None:
        config = _quant_config_default
    else:
        assert isinstance(config, dict), "config must be dict"
        config = _parse_configs(config)
    _logger.info("quant_aware config {}".format(config))

    main_graph = IrGraph(core.Graph(program.desc), for_test=for_test)

    transform_pass_ops = []
    quant_dequant_ops = []
    for op_type in config['quantize_op_types']:
        if op_type in TRANSFORM_PASS_OP_TYPES:
            transform_pass_ops.append(op_type)
        elif op_type in QUANT_DEQUANT_PASS_OP_TYPES:
            quant_dequant_ops.append(op_type)
    if len(transform_pass_ops) > 0:
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            weight_bits=config['weight_bits'],
            activation_bits=config['activation_bits'],
            activation_quantize_type=config['activation_quantize_type'],
            weight_quantize_type=config['weight_quantize_type'],
            window_size=config['window_size'],
            moving_rate=config['moving_rate'],
            quantizable_op_type=transform_pass_ops,
            skip_pattern=config['not_quant_pattern'])

        transform_pass.apply(main_graph)

    if len(quant_dequant_ops) > 0:
        quant_dequant_pass = AddQuantDequantPass(
            scope=scope,
            place=place,
            moving_rate=config['moving_rate'],
            quant_bits=config['activation_bits'],
            skip_pattern=config['not_quant_pattern'],
            quantizable_op_type=quant_dequant_ops)
        quant_dequant_pass.apply(main_graph)

    if for_test:
        quant_program = main_graph.to_program()
    else:
        quant_program = fluid.CompiledProgram(main_graph.graph)
    return quant_program
Exemplo n.º 14
0
def create_quant_model(model,
                       params,
                       activation_quantize_type='moving_average_abs_max',
                       weight_quantize_type='channel_wise_abs_max',
                       save=False):
    place = paddle.CUDAPlace(0)
    scope = global_scope()
    exe = paddle.static.Executor(place)
    [inference_program, feed_target_names, fetch_targets
     ] = paddle.static.load_inference_model(path_prefix=None,
                                            executor=exe,
                                            model_filename=model,
                                            params_filename=params)
    graph = IrGraph(core.Graph(inference_program.desc), for_test=True)

    out_scale_op_list = [
        "conv2d",
        "depthwise_conv2d",
        "mul",
        "matmul",
        "relu",
        "leaky_relu",
        "relu6",
        "sigmoid",
        "tanh",
        "prelu",
        "swish",
        "softmax",
        "batch_norm",
        "layer_norm",
        "elementwise_add",
        "pool2d",
        "reshape2",
        "transpose2",
        "concat",
        "elementwise_mul",
        "scale",
        "slice",
        "hard_swish",
        "hard_sigmoid",
        "conv2d_transpose",
        "gru",
        "bilinear_interp",
        "nearest_interp",
        "trilinear_interp",
        "flatten",
        "flatten2",
        "transpose",
        "pad2d",
        "reshape",
        "layer_norm",
    ]
    op_real_in_out_name = {
        "conv2d": [["Input", "Filter"], ["Output"]],
        "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
        "conv2d_transpose": [["Input", "Filter"], ["Output"]],
        "mul": [["X", "Y"], ["Out"]],
        "matmul": [["X", "Y"], ["Out"]],
        "pool2d": [["X"], ["Out"]],
        "elementwise_add": [["X", "Y"], ["Out"]],
        "concat": [["X"], ["Out"]],
        "softmax": [["X"], ["Out"]],
        "argmax": [["X"], ["Out"]],
        "transpose": [["X"], ["Out"]],
        "equal": [["X", "Y"], ["Out"]],
        "gather": [["X"], ["Out"]],
        "greater_equal": [["X", "Y"], ["Out"]],
        "greater_than": [["X", "Y"], ["Out"]],
        "less_equal": [["X", "Y"], ["Out"]],
        "less_than": [["X", "Y"], ["Out"]],
        "mean": [["X"], ["Out"]],
        "not_equal": [["X", "Y"], ["Out"]],
        "reshape": [["X"], ["Out"]],
        "reshape2": [["X"], ["Out"]],
        "transpose2": [["X"], ["Out"]],
        "bilinear_interp": [["X"], ["Out"]],
        "nearest_interp": [["X"], ["Out"]],
        "trilinear_interp": [["X"], ["Out"]],
        "slice": [["Input"], ["Out"]],
        "squeeze": [["X"], ["Out"]],
        "elementwise_sub": [["X", "Y"], ["Out"]],
        "relu": [["X"], ["Out"]],
        "relu6": [["X"], ["Out"]],
        "leaky_relu": [["X"], ["Out"]],
        "prelu": [["X"], ["Out"]],
        "tanh": [["X"], ["Out"]],
        "swish": [["X"], ["Out"]],
        "dropout": [["X"], ["Out"]],
        "batch_norm": [["X"], ["Y"]],
        "layer_norm": [["X"], ["Y"]],
        "sigmoid": [["X"], ["Out"]],
        "elementwise_mul": [["X", "Y"], ["Out"]],
        "scale": [["X"], ["Out"]],
        "hard_swish": [["X"], ["Out"]],
        "hard_sigmoid": [["X"], ["Out"]],
        "gru": [["Input", "Weight"], ["Hidden"]],
        "lstm": [["Input", "Weight"], ["Hidden"]],
        "pad2d": [["X"], ["Out"]],
        "flatten": [["X"], ["Out"]],
        "flatten2": [["X"], ["Out"]],
    }

    def _get_op_output_var_names(op):
        """ """
        assert isinstance(op, (IrNode, Operator)), \
            "The input op should be IrNode or Operator."
        var_names = []
        op_name = op.name() if isinstance(op, IrNode) \
            else op.type
        if op_name not in op_real_in_out_name:
            return []

        name_list = op_real_in_out_name[op_name][1]
        for name in name_list:
            var_name = op.output(name)
            if isinstance(var_name, list):
                var_names.extend(var_name)
            else:
                var_names.append(var_name)
        return var_names

    transform_pass = QuantizationTransformPass(
        scope=scope,
        place=place,
        activation_quantize_type=activation_quantize_type,
        weight_quantize_type=weight_quantize_type)
    transform_pass.apply(graph)

    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() in out_scale_op_list:
            var_names = _get_op_output_var_names(op_node)
            for var_name in var_names:
                in_node = graph._find_node_by_name(op_node.outputs, var_name)
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

                op_node.op()._set_attr("out_threshold", 3.0)

    # Freeze graph for inference, but the weight of fc/conv is still float type.
    freeze_pass = QuantizationFreezePass(
        scope=scope, place=place, weight_quantize_type=weight_quantize_type)
    freeze_pass.apply(graph)

    main_program = graph.to_program()

    # modify fake_quantize_moving_average_abs_max(InScale) and fake_channel_wise_dequantize_max_abs(Scales)
    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() == 'fake_quantize_moving_average_abs_max':
            var_name = op_node.input("InScale")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.array([1], dtype=np.float32), place)
        elif op_node.name() == 'fake_channel_wise_dequantize_max_abs':
            var_name = op_node.input("Scales")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.ones(tensor.shape(), dtype=np.float32), place)

    if save:
        fluid.io.save_inference_model('test_inference_model',
                                      feed_target_names,
                                      fetch_targets,
                                      exe,
                                      main_program=main_program)

    feed_vars = [
        main_program.global_block().var(name) for name in feed_target_names
    ]
    serialized_program = paddle.static.serialize_program(feed_vars,
                                                         fetch_targets,
                                                         program=main_program)
    serialized_params = paddle.static.serialize_persistables(
        feed_vars, fetch_targets, executor=exe, program=main_program)
    return serialized_program, serialized_params
Exemplo n.º 15
0
    def test_out_scale_acc(self):
        def _build_static_lenet(main, startup, is_test=False, seed=1000):
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    main.random_seed = seed
                    startup.random_seed = seed
                    img = fluid.layers.data(name='image',
                                            shape=[1, 28, 28],
                                            dtype='float32')
                    label = fluid.layers.data(name='label',
                                              shape=[1],
                                              dtype='int64')
                    prediction = StaticLenet(img)
                    if not is_test:
                        loss = fluid.layers.cross_entropy(input=prediction,
                                                          label=label)
                        avg_loss = fluid.layers.mean(loss)
                    else:
                        avg_loss = prediction
            return img, label, avg_loss

        reader = paddle.batch(paddle.dataset.mnist.test(),
                              batch_size=32,
                              drop_last=True)
        weight_quantize_type = 'abs_max'
        activation_quant_type = 'moving_average_abs_max'
        param_init_map = {}
        seed = 1000
        lr = 0.1
        dynamic_out_scale_list = []
        static_out_scale_list = []

        # imperative train
        _logger.info(
            "--------------------------dynamic graph qat--------------------------"
        )
        imperative_out_scale = ImperativeQuantAware()

        with fluid.dygraph.guard():
            np.random.seed(seed)
            fluid.default_main_program().random_seed = seed
            fluid.default_startup_program().random_seed = seed
            lenet = ImperativeLenet()
            fixed_state = {}
            for name, param in lenet.named_parameters():
                p_shape = param.numpy().shape
                p_value = param.numpy()
                if name.endswith("bias"):
                    value = np.zeros_like(p_value).astype('float32')
                else:
                    value = np.random.normal(loc=0.0,
                                             scale=0.01,
                                             size=np.product(p_shape)).reshape(
                                                 p_shape).astype('float32')
                fixed_state[name] = value
                param_init_map[param.name] = value
            lenet.set_dict(fixed_state)
            imperative_out_scale.quantize(lenet)
            adam = AdamOptimizer(learning_rate=lr,
                                 parameter_list=lenet.parameters())
            dynamic_loss_rec = []
            lenet.train()
            for batch_id, data in enumerate(reader()):
                x_data = np.array([x[0].reshape(1, 28, 28)
                                   for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data
                                   ]).astype('int64').reshape(-1, 1)

                img = fluid.dygraph.to_variable(x_data)
                label = fluid.dygraph.to_variable(y_data)

                out = lenet(img)
                loss = fluid.layers.cross_entropy(out, label)
                avg_loss = fluid.layers.mean(loss)
                avg_loss.backward()
                adam.minimize(avg_loss)
                lenet.clear_gradients()
                dynamic_loss_rec.append(avg_loss.numpy()[0])
                if batch_id % 100 == 0:
                    _logger.info('{}: {}'.format('loss', avg_loss.numpy()))

            lenet.eval()

        path = "./dynamic_outscale_infer_model/lenet"
        dynamic_save_dir = "./dynamic_outscale_infer_model"

        imperative_out_scale.save_quantized_model(
            layer=lenet,
            path=path,
            input_spec=[
                paddle.static.InputSpec(shape=[None, 1, 28, 28],
                                        dtype='float32')
            ])

        _logger.info(
            "--------------------------static graph qat--------------------------"
        )
        static_loss_rec = []
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)

        main = fluid.Program()
        infer = fluid.Program()
        startup = fluid.Program()
        static_img, static_label, static_loss = _build_static_lenet(
            main, startup, False, seed)
        infer_img, _, infer_pre = _build_static_lenet(infer, startup, True,
                                                      seed)
        with fluid.unique_name.guard():
            with fluid.program_guard(main, startup):
                opt = AdamOptimizer(learning_rate=lr)
                opt.minimize(static_loss)

        scope = core.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)
        for param in main.all_parameters():
            param_tensor = scope.var(param.name).get_tensor()
            param_tensor.set(param_init_map[param.name], place)
        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
        infer_graph = IrGraph(core.Graph(infer.desc), for_test=True)
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quantize_type,
            quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'])
        transform_pass.apply(main_graph)
        transform_pass.apply(infer_graph)
        outscale_pass = OutScaleForTrainingPass(scope=scope, place=place)
        outscale_pass.apply(main_graph)
        build_strategy = fluid.BuildStrategy()
        build_strategy.fuse_all_reduce_ops = False
        binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel(
            loss_name=static_loss.name, build_strategy=build_strategy)

        feeder = fluid.DataFeeder(feed_list=[static_img, static_label],
                                  place=place)
        with fluid.scope_guard(scope):
            for batch_id, data in enumerate(reader()):
                loss_v, = exe.run(binary,
                                  feed=feeder.feed(data),
                                  fetch_list=[static_loss])
                static_loss_rec.append(loss_v[0])
                if batch_id % 100 == 0:
                    _logger.info('{}: {}'.format('loss', loss_v))
        scale_inference_pass = OutScaleForInferencePass(scope=scope)
        scale_inference_pass.apply(infer_graph)

        save_program = infer_graph.to_program()
        static_save_dir = "./static_outscale_infer_model"
        with fluid.scope_guard(scope):
            fluid.io.save_inference_model(
                dirname=static_save_dir,
                feeded_var_names=[infer_img.name],
                target_vars=[infer_pre],
                executor=exe,
                main_program=save_program,
                model_filename="lenet" + INFER_MODEL_SUFFIX,
                params_filename="lenet" + INFER_PARAMS_SUFFIX)

        rtol = 1e-05
        atol = 1e-08
        for i, (loss_d,
                loss_s) in enumerate(zip(dynamic_loss_rec, static_loss_rec)):
            diff = np.abs(loss_d - loss_s)
            if diff > (atol + rtol * np.abs(loss_s)):
                _logger.info(
                    "diff({}) at {}, dynamic loss = {}, static loss = {}".
                    format(diff, i, loss_d, loss_s))
                break

        self.assertTrue(np.allclose(np.array(dynamic_loss_rec),
                                    np.array(static_loss_rec),
                                    rtol=rtol,
                                    atol=atol,
                                    equal_nan=True),
                        msg='Failed to do the imperative qat.')

        # load dynamic model
        [dynamic_inference_program, feed_target_names,
         fetch_targets] = (fluid.io.load_inference_model(
             dirname=dynamic_save_dir,
             executor=exe,
             model_filename="lenet" + INFER_MODEL_SUFFIX,
             params_filename="lenet" + INFER_PARAMS_SUFFIX))
        # load static model
        [static_inference_program, feed_target_names,
         fetch_targets] = (fluid.io.load_inference_model(
             dirname=static_save_dir,
             executor=exe,
             model_filename="lenet" + INFER_MODEL_SUFFIX,
             params_filename="lenet" + INFER_PARAMS_SUFFIX))

        dynamic_ops = dynamic_inference_program.global_block().ops
        static_ops = static_inference_program.global_block().ops

        for op in dynamic_ops[:]:
            if op.type == "flatten2" or 'fake' in op.type:
                dynamic_ops.remove(op)

        for op in static_ops[:]:
            if 'fake' in op.type:
                static_ops.remove(op)

        for i in range(len(dynamic_ops)):
            if dynamic_ops[i].has_attr("out_threshold"):
                self.assertTrue(dynamic_ops[i].type == static_ops[i].type)
                self.assertTrue(dynamic_ops[i].attr("out_threshold") ==
                                static_ops[i].attr("out_threshold"))