Exemplo n.º 1
0
    def test_recognize_digits_conv(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            images = layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)

            program.append_backward(avg_cost)

        print(str(program))
Exemplo n.º 2
0
    def test_recognize_digits_conv(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            images = layers.data(name='pixel',
                                 shape=[1, 28, 28],
                                 dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(input=images,
                                                    filter_size=5,
                                                    num_filters=2,
                                                    pool_size=2,
                                                    pool_stride=2,
                                                    act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(input=conv_pool_1,
                                                    filter_size=5,
                                                    num_filters=4,
                                                    pool_size=2,
                                                    pool_stride=2,
                                                    act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)

            program.append_backward(avg_cost)

        print(str(program))
Exemplo n.º 3
0
    def test_fit_a_line(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)
            program.append_backward(avg_cost)

        print(str(program))
Exemplo n.º 4
0
    def test_fit_a_line(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)
            program.append_backward(avg_cost)

        print(str(program))
Exemplo n.º 5
0
    def test_append_backward(self):
        prog = Program()
        block = prog.global_block()

        mul_x = block.create_var(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        mul_op = block.append_op(
            type="mul",
            inputs={"X": [mul_x],
                    "Y": mul_y},
            outputs={"Out": [mul_out]},
            attrs={"x_num_col_dims": 1})

        add_y = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="add.y")
        add_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="add.out")
        add_op = block.append_op(
            type="elementwise_add",
            inputs={"X": mul_out,
                    "Y": add_y},
            outputs={"Out": add_out},
            attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": add_out}, outputs={"Out": mean_out})

        self.assertEqual(mul_op.idx, 0)
        self.assertEqual(add_op.idx, 1)
        param_to_grad = prog.append_backward(mean_out, set())

        def grad_name(name):
            return name + "@GRAD"

        for var_name in ("mul.x", "mul.y", "mul.out", "add.y", "add.out",
                         "mean.out"):
            self.assertEqual(param_to_grad[var_name][0], grad_name(var_name))
            self.assertEqual(param_to_grad[var_name][1], 0)

        expect_ops = [
            "mul", "elementwise_add", "mean", "fill_constant", "mean_grad",
            "elementwise_add_grad", "mul_grad"
        ]
        actual_ops = []
        for op in block.ops:
            actual_ops.append(op.type)
        self.assertEqual(actual_ops, expect_ops)
Exemplo n.º 6
0
    def test_append_backward(self):
        prog = Program()
        block = prog.global_block()

        mul_x = block.create_var(dtype="float32",
                                 shape=[5, 10],
                                 lod_level=0,
                                 name="mul.x")
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        mul_op = block.append_op(type="mul",
                                 inputs={
                                     "X": [mul_x],
                                     "Y": mul_y
                                 },
                                 outputs={"Out": [mul_out]},
                                 attrs={"x_num_col_dims": 1})

        add_y = block.create_var(dtype="float32",
                                 shape=[5, 8],
                                 lod_level=0,
                                 name="add.y")
        add_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="add.out")
        add_op = block.append_op(type="elementwise_add",
                                 inputs={
                                     "X": mul_out,
                                     "Y": add_y
                                 },
                                 outputs={"Out": add_out},
                                 attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": add_out},
                        outputs={"Out": mean_out})

        self.assertEqual(mul_op.idx, 0)
        self.assertEqual(add_op.idx, 1)
        param_to_grad = prog.append_backward(mean_out, set())

        def grad_name(name):
            return name + "@GRAD"

        for var_name in ("mul.x", "mul.y", "mul.out", "add.y", "add.out",
                         "mean.out"):
            self.assertEqual(param_to_grad[var_name][0], grad_name(var_name))
            self.assertEqual(param_to_grad[var_name][1], 0)

        expect_ops = [
            "mul", "elementwise_add", "mean", "fill_constant", "mean_grad",
            "elementwise_add_grad", "mul_grad"
        ]
        actual_ops = []
        for op in block.ops:
            actual_ops.append(op.type)
        self.assertEqual(actual_ops, expect_ops)