Exemplo n.º 1
0
def get_variable_info(var):
    if not isinstance(var, fluid.framework.Variable):
        raise TypeError("var shoule be an instance of fluid.framework.Variable")

    var_info = {
        'name': var.name,
        'stop_gradient': var.stop_gradient,
        'is_data': var.is_data,
        'error_clip': var.error_clip,
        'type': var.type
    }

    try:
        var_info['dtype'] = convert_dtype_to_string(var.dtype)
        var_info['lod_level'] = var.lod_level
        var_info['shape'] = var.shape
    except:
        pass

    if isinstance(var, fluid.framework.Parameter):
        var_info['trainable'] = var.trainable
        var_info['optimize_attr'] = var.optimize_attr
        var_info['regularizer'] = var.regularizer
        if not version_compare(paddle.__version__, '1.8'):
            var_info['gradient_clip_attr'] = var.gradient_clip_attr
        var_info['do_model_average'] = var.do_model_average
    else:
        var_info['persistable'] = var.persistable

    return var_info
Exemplo n.º 2
0
 def _check_paddle_version(self):
     if version_compare(self.paddle_version, paddle.__version__):
         logger.warning(
             "This Module is generated by the PaddlePaddle with version %s, and the local PaddlePaddle version is %s, which may cause serious incompatible bug. Please upgrade PaddlePaddle to the latest version."
             % (self.paddle_version, paddle.__version__))
         return False
     return True
Exemplo n.º 3
0
 def forward(self, input_ids, position_ids, segment_ids, input_mask):
     if version_compare(paddle.__version__, '1.8'):
         pooled_output, sequence_output = self.model_runner(
             input_ids, position_ids, segment_ids, input_mask)
         return {
             'pooled_output': pooled_output,
             'sequence_output': sequence_output
         }
     else:
         raise RuntimeError(
             '{} only support dynamic graph mode in paddle >= 1.8'.format(
                 self.name))
Exemplo n.º 4
0
    def _build_net(self):
        if version_compare(paddle.__version__, "1.6"):
            self.seq_len = fluid.layers.data(name="seq_len",
                                             shape=[-1],
                                             dtype='int64')
        else:
            self.seq_len = fluid.layers.data(name="seq_len",
                                             shape=[1],
                                             dtype='int64')
        seq_len = fluid.layers.assign(self.seq_len)

        if self.add_crf:
            unpad_feature = fluid.layers.sequence_unpad(self.feature,
                                                        length=self.seq_len)
            self.emission = fluid.layers.fc(
                size=self.num_classes,
                input=unpad_feature,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Uniform(low=-0.1, high=0.1),
                    regularizer=fluid.regularizer.L2DecayRegularizer(
                        regularization_coeff=1e-4)))
            size = self.emission.shape[1]
            fluid.layers.create_parameter(shape=[size + 2, size],
                                          dtype=self.emission.dtype,
                                          name='crfw')
            self.ret_infers = fluid.layers.crf_decoding(
                input=self.emission, param_attr=fluid.ParamAttr(name='crfw'))
            ret_infers = fluid.layers.assign(self.ret_infers)
            return [ret_infers]
        else:
            self.logits = fluid.layers.fc(
                input=self.feature,
                size=self.num_classes,
                num_flatten_dims=2,
                param_attr=fluid.ParamAttr(
                    name="cls_seq_label_out_w",
                    initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
                bias_attr=fluid.ParamAttr(
                    name="cls_seq_label_out_b",
                    initializer=fluid.initializer.Constant(0.)))

            self.ret_infers = fluid.layers.reshape(x=fluid.layers.argmax(
                self.logits, axis=2),
                                                   shape=[-1, 1])
            ret_infers = fluid.layers.assign(self.ret_infers)

            logits = self.logits
            logits = fluid.layers.flatten(logits, axis=2)
            logits = fluid.layers.softmax(logits)
            self.num_labels = logits.shape[1]
            return [logits]
Exemplo n.º 5
0
    def predict(self,
                data,
                load_best_model=True,
                return_result=False,
                accelerate_mode=True):
        """
        make prediction for the input data.

        Args:
            data (list): the data will be predicted.
            load_best_model (bool): load the best model or not
            return_result (bool): return a readable result or just the raw run result
            accelerate_mode (bool): use high-performance predictor or not

        Returns:
            RunState: the running result of predict phase
        """
        if not version_compare(paddle.__version__,
                               "1.6.2") and accelerate_mode:
            logger.warning(
                "Fail to open predict accelerate mode as it does not support paddle < 1.6.2. Please update PaddlePaddle."
            )
            accelerate_mode = False
        self.accelerate_mode = accelerate_mode

        with self.phase_guard(phase="predict"):
            self._predict_data = data
            self._predict_start_event()

            if load_best_model:
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
            if not self.accelerate_mode:
                run_states = self._run()
            else:
                if not self._predictor:
                    self._predictor = self._create_predictor()
                run_states = self._run_with_predictor()

            self._predict_end_event(run_states)
            self._predict_data = None
            if return_result:
                return self._postprocessing(run_states)
        return run_states
Exemplo n.º 6
0
    def __init__(self,
                 name=None,
                 directory=None,
                 module_dir=None,
                 version=None,
                 max_seq_len=128,
                 **kwargs):
        if not directory:
            return
        super(TransformerModule, self).__init__(
            name=name,
            directory=directory,
            module_dir=module_dir,
            version=version,
            **kwargs)

        self.max_seq_len = max_seq_len
        if version_compare(paddle.__version__, '1.8'):
            with tmp_dir() as _dir:
                input_dict, output_dict, program = self.context(
                    max_seq_len=max_seq_len)
                fluid.io.save_inference_model(
                    dirname=_dir,
                    main_program=program,
                    feeded_var_names=[
                        input_dict['input_ids'].name,
                        input_dict['position_ids'].name,
                        input_dict['segment_ids'].name,
                        input_dict['input_mask'].name
                    ],
                    target_vars=[
                        output_dict["pooled_output"],
                        output_dict["sequence_output"]
                    ],
                    executor=fluid.Executor(fluid.CPUPlace()))

                with fluid.dygraph.guard():
                    self.model_runner = fluid.dygraph.StaticModelRunner(_dir)
Exemplo n.º 7
0
    def _build_net(self):
        self.seq_len = fluid.layers.data(name="seq_len",
                                         shape=[1],
                                         dtype='int64',
                                         lod_level=0)

        if version_compare(paddle.__version__, "1.6"):
            self.seq_len_used = fluid.layers.squeeze(self.seq_len, axes=[1])
        else:
            self.seq_len_used = self.seq_len

        #增加gru层相关的代码
        grnn_hidden_dim = 256  # 768
        crf_lr = 0.2
        bigru_num = 2
        init_bound = 0.1

        def _bigru_layer(input_feature):
            """define the bidirectional gru layer
            """
            pre_gru = fluid.layers.fc(
                input=input_feature,
                size=grnn_hidden_dim * 3,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Uniform(low=-init_bound,
                                                          high=init_bound),
                    regularizer=fluid.regularizer.L2DecayRegularizer(
                        regularization_coeff=1e-4)))
            gru = fluid.layers.dynamic_gru(
                input=pre_gru,
                size=grnn_hidden_dim,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Uniform(low=-init_bound,
                                                          high=init_bound),
                    regularizer=fluid.regularizer.L2DecayRegularizer(
                        regularization_coeff=1e-4)))
            pre_gru_r = fluid.layers.fc(
                input=input_feature,
                size=grnn_hidden_dim * 3,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Uniform(low=-init_bound,
                                                          high=init_bound),
                    regularizer=fluid.regularizer.L2DecayRegularizer(
                        regularization_coeff=1e-4)))
            gru_r = fluid.layers.dynamic_gru(
                input=pre_gru_r,
                size=grnn_hidden_dim,
                is_reverse=True,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Uniform(low=-init_bound,
                                                          high=init_bound),
                    regularizer=fluid.regularizer.L2DecayRegularizer(
                        regularization_coeff=1e-4)))
            bi_merge = fluid.layers.concat(input=[gru, gru_r], axis=1)
            return bi_merge

        if self.add_crf:
            unpad_feature = fluid.layers.sequence_unpad(
                self.feature, length=self.seq_len_used)

            #增加gru层相关的代码
            input_feature = unpad_feature
            for i in range(bigru_num):
                bigru_output = _bigru_layer(input_feature)
                input_feature = bigru_output

            unpad_feature = input_feature
            self.emission = fluid.layers.fc(
                size=self.num_classes,
                input=unpad_feature,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Uniform(low=-0.1, high=0.1),
                    regularizer=fluid.regularizer.L2DecayRegularizer(
                        regularization_coeff=1e-4)))
            size = self.emission.shape[1]
            fluid.layers.create_parameter(shape=[size + 2, size],
                                          dtype=self.emission.dtype,
                                          name='crfw')
            self.ret_infers = fluid.layers.crf_decoding(
                input=self.emission, param_attr=fluid.ParamAttr(name='crfw'))
            ret_infers = fluid.layers.assign(self.ret_infers)
            return [ret_infers]
        else:
            self.logits = fluid.layers.fc(
                input=self.feature,
                size=self.num_classes,
                num_flatten_dims=2,
                param_attr=fluid.ParamAttr(
                    name="cls_seq_label_out_w",
                    initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
                bias_attr=fluid.ParamAttr(
                    name="cls_seq_label_out_b",
                    initializer=fluid.initializer.Constant(0.)))

            self.ret_infers = fluid.layers.reshape(x=fluid.layers.argmax(
                self.logits, axis=2),
                                                   shape=[-1, 1])

            logits = self.logits
            logits = fluid.layers.flatten(logits, axis=2)
            logits = fluid.layers.softmax(logits)
            self.num_labels = logits.shape[1]
            return [logits]