Exemplo n.º 1
0
def predict(configs, detection):
    global predictor
    width = configs['input_width']
    height = configs['input_height']

    image = read_image(configs)
    input = preprocess_image(image, configs)

    tensor = pm.PaddleTensor()
    tensor.dtype = pm.PaddleDType.FLOAT32
    tensor.shape = (1, 3, width, height)
    tensor.data = pm.PaddleBuf(input)

    paddle_data_feeds = [tensor]

    print('prediction is running ...')
    outputs = predictor.Run(paddle_data_feeds)
    assert len(
        outputs
    ) == 1, 'error numbers of tensor returned from Predictor.Run function !!!'

    output = np.array(outputs[0], copy=False)
    print('output:', output)
    print('\nprediction result :')
    print('\t nDim: ' + str(output.ndim))
    print('\tShape: ' + str(output.shape))
    print('\tDType: ' + str(output.dtype))

    # print(output)
    # print('')
    if detection:
        detect(output, configs)
    else:
        classify(output, configs)
Exemplo n.º 2
0
 def init_tensor(self, data_shape):
     """
     初始化PaddleMobile模型输入数据张量
     :param data_shape: 数据形状
     :return: 数据张量
     """
     tensor = pm.PaddleTensor()
     tensor.dtype = pm.PaddleDType.FLOAT32
     tensor.shape = data_shape
     return tensor
Exemplo n.º 3
0
    def data_feed(self, data_shape):
        '''
		初始化PaddleMobile模型输入数据张量
		参数:数据形状
		返回:数据张量
		'''
        tensor = pm.PaddleTensor()
        tensor.dtype = pm.PaddleDType.FLOAT32
        tensor.shape = (data_shape)
        return tensor
Exemplo n.º 4
0
 def tensor_deal(self, origin):
     tensor_img = origin.resize((256, 256), Image.BILINEAR)
     if tensor_img.mode != 'RGB':
         tensor_img = tensor_img.convert('RGB')
     tensor_img = np.array(tensor_img).astype('float32').transpose(
         (2, 0, 1))
     tensor_img -= 127.5
     tensor_img *= 0.007843
     tensor_img = tensor_img[np.newaxis, :]
     tensor = pm.PaddleTensor()
     tensor.dtype = pm.PaddleDType.FLOAT32
     tensor.shape = (1, 3, 256, 256)
     tensor.data = pm.PaddleBuf(tensor_img)
     paddle_data_feeds = [tensor]
     return paddle_data_feeds
    predictor = load_model()

    while True:
        # 保存图像 调试用
        select.select((video,), (), ())
        image_data = video.read_and_queue()
        frame = cv2.imdecode(np.frombuffer(image_data, dtype=np.uint8), cv2.IMREAD_COLOR)
        cv2.imwrite("test.jpg", frame)

        # 图像预处理
        origin, img = dataset(video)
        tensor_img = origin.resize((244, 244), Image.BILINEAR)
        if tensor_img.mode != 'RGB':
            tensor_img = tensor_img.convert('RGB')
        tensor_img = np.array(tensor_img).astype('float32').transpose((2, 0, 1))  # HWC to CHW
        tensor = pm.PaddleTensor()
        tensor.dtype =pm.PaddleDType.FLOAT32
        tensor.shape  = (1,1,244,244)
        tensor.data = pm.PaddleBuf(tensor_img)
        paddle_data_feeds = [tensor]

        # 将图像输入神经网络并获得输出
        outputs = predictor.Run(paddle_data_feeds)

        # 处理输出结果并返回最终预测值
        output = np.array(outputs[0], copy = False)
        # print(output)
        number = np.argsort(output)
        print("The number is ", number[0][-1])

Exemplo n.º 6
0
 def init_tensor(self, data_shape):
     tensor = pm.PaddleTensor()
     tensor.dtype = pm.PaddleDType.FLOAT32
     tensor.shape = data_shape
     return tensor