Exemplo n.º 1
0
    def estimate(self, eppci, estimator="wls", **opt_vars):
        opt_method = DEFAULT_OPT_METHOD if 'opt_method' not in opt_vars else opt_vars['opt_method']

        # matrix calculation object
        estm = get_estimator(BaseEstimatorOpt, estimator)(eppci, **opt_vars)

        jac = estm.create_cost_jacobian
        res = minimize(estm.cost_function, x0=eppci.E, 
                       method=opt_method, jac=jac, tol=self.tolerance,
                       options={"disp":True})

        self.successful = res.success
        if self.successful:
            E = res.x
            eppci.update_E(E)
            return eppci
        else:
            raise Exception("Optimiaztion failed! State Estimation not successful!")
Exemplo n.º 2
0
    def estimate(self, eppci: ExtendedPPCI, estimator="wls", **kwargs):
        self.initialize(eppci)

        # matrix calculation object
        sem = get_estimator(BaseEstimatorIRWLS, estimator)(eppci, **kwargs)

        current_error, cur_it = 100., 0
        E = eppci.E
        while current_error > self.tolerance and cur_it < self.max_iterations:
            self.logger.debug("Starting iteration {:d}".format(1 + cur_it))
            try:
                # residual r
                r = csr_matrix(sem.create_rx(E)).T

                # jacobian matrix H
                H = csr_matrix(sem.create_hx_jacobian(E))

                # gain matrix G_m
                # G_m = H^t * Phi * H
                phi = csr_matrix(sem.create_phi(E))
                G_m = H.T * (phi * H)

                # state vector difference d_E and update E
                d_E = spsolve(G_m, H.T * (phi * r))
                E += d_E.ravel()
                eppci.update_E(E)

                # prepare next iteration
                cur_it += 1
                current_error = np.max(np.abs(d_E))
                self.logger.debug(
                    "Current error: {:.7f}".format(current_error))
            except np.linalg.linalg.LinAlgError:
                self.logger.error(
                    "A problem appeared while using the linear algebra methods."
                    "Check and change the measurement set.")
                return False

        # check if the estimation is successfull
        self.check_result(current_error, cur_it)
        # update V/delta
        return eppci