Exemplo n.º 1
0
def _powerflow(net, **kwargs):
    """
    Gets called by runpp or rundcpp with different arguments.
    """

    # get infos from options
    init_results = net["_options"]["init_results"]
    ac = net["_options"]["ac"]
    recycle = net["_options"]["recycle"]
    mode = net["_options"]["mode"]
    algorithm = net["_options"]["algorithm"]
    max_iteration = net["_options"]["max_iteration"]

    net["converged"] = False
    net["OPF_converged"] = False
    _add_auxiliary_elements(net)

    if not ac or init_results:
        verify_results(net)
    else:
        reset_results(net)

    # TODO remove this when zip loads are integrated for all PF algorithms
    if algorithm not in ['nr', 'bfsw']:
        net["_options"]["voltage_depend_loads"] = False

    if recycle["ppc"] and "_ppc" in net and net[
            "_ppc"] is not None and "_pd2ppc_lookups" in net:
        # update the ppc from last cycle
        ppc, ppci = _update_ppc(net)
    else:
        # convert pandapower net to ppc
        ppc, ppci = _pd2ppc(net)

    # store variables
    net["_ppc"] = ppc

    if not "VERBOSE" in kwargs:
        kwargs["VERBOSE"] = 0

    # ----- run the powerflow -----
    result = _run_pf_algorithm(ppci, net["_options"], **kwargs)

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    result = _copy_results_ppci_to_ppc(result, ppc, mode)

    # raise if PF was not successful. If DC -> success is always 1
    if result["success"] != 1:
        _clean_up(net, res=False)
        raise LoadflowNotConverged("Power Flow {0} did not converge after "
                                   "{1} iterations!".format(
                                       algorithm, max_iteration))
    else:
        net["_ppc"] = result
        net["converged"] = True

    _extract_results(net, result)
    _clean_up(net)
Exemplo n.º 2
0
def _powerflow(net, **kwargs):
    """
    Gets called by runpp or rundcpp with different arguments.
    """

    # get infos from options
    ac = net["_options"]["ac"]
    algorithm = net["_options"]["algorithm"]

    net["converged"] = False
    net["OPF_converged"] = False
    _add_auxiliary_elements(net)

    if not ac or net["_options"]["init_results"]:
        verify_results(net)
    else:
        init_results(net)

    if net["_options"]["voltage_depend_loads"] and algorithm not in [
            'nr', 'bfsw'
    ] and not (allclose(net.load.const_z_percent.values, 0)
               and allclose(net.load.const_i_percent.values, 0)):
        logger.error((
            "pandapower powerflow does not support voltage depend loads for algorithm "
            "'%s'!") % algorithm)

    # clear lookups
    net._pd2ppc_lookups = {
        "bus": array([], dtype=int),
        "ext_grid": array([], dtype=int),
        "gen": array([], dtype=int),
        "branch": array([], dtype=int)
    }

    # convert pandapower net to ppc
    ppc, ppci = _pd2ppc(net)

    # store variables
    net["_ppc"] = ppc

    if "VERBOSE" not in kwargs:
        kwargs["VERBOSE"] = 0

    # ----- run the powerflow -----
    result = _run_pf_algorithm(ppci, net["_options"], **kwargs)
    # read the results (=ppci with results) to net
    _ppci_to_net(result, net)
Exemplo n.º 3
0
def _powerflow(net, **kwargs):
    """
    Gets called by runpp or rundcpp with different arguments.
    """

    # get infos from options
    ac = net["_options"]["ac"]
    algorithm = net["_options"]["algorithm"]

    net["converged"] = False
    net["OPF_converged"] = False
    _add_auxiliary_elements(net)

    if not ac or net["_options"]["init_results"]:
        verify_results(net)
    else:
        init_results(net)

    # TODO remove this when zip loads are integrated for all PF algorithms
    if algorithm not in ['nr', 'bfsw']:
        net["_options"]["voltage_depend_loads"] = False

    # clear lookups
    net._pd2ppc_lookups = {
        "bus": array([], dtype=int),
        "ext_grid": array([], dtype=int),
        "gen": array([], dtype=int),
        "branch": array([], dtype=int)
    }

    # convert pandapower net to ppc
    ppc, ppci = _pd2ppc(net)

    # store variables
    net["_ppc"] = ppc

    if not "VERBOSE" in kwargs:
        kwargs["VERBOSE"] = 0

    # ----- run the powerflow -----
    result = _run_pf_algorithm(ppci, net["_options"], **kwargs)
    # read the results (=ppci with results) to net
    _ppci_to_net(result, net)
Exemplo n.º 4
0
def _optimal_powerflow(net, verbose, suppress_warnings, **kwargs):
    ac = net["_options"]["ac"]
    init = net["_options"]["init"]

    if "OPF_FLOW_LIM" not in kwargs:
        kwargs["OPF_FLOW_LIM"] = 2

    if net["_options"]["voltage_depend_loads"] and not (
            allclose(net.load.const_z_percent.values, 0)
            and allclose(net.load.const_i_percent.values, 0)):
        logger.error(
            "pandapower optimal_powerflow does not support voltage depend loads."
        )

    ppopt = ppoption(VERBOSE=verbose, PF_DC=not ac, INIT=init, **kwargs)
    net["OPF_converged"] = False
    net["converged"] = False
    _add_auxiliary_elements(net)

    if not ac or net["_options"]["init_results"]:
        verify_results(net)
    else:
        init_results(net, "opf")

    ppc, ppci = _pd2ppc(net)

    if not ac:
        ppci["bus"][:, VM] = 1.0
    net["_ppc_opf"] = ppci
    if len(net.dcline) > 0:
        ppci = add_userfcn(ppci,
                           'formulation',
                           _add_dcline_constraints,
                           args=net)

    if init == "pf":
        ppci = _run_pf_before_opf(net, ppci)
    if suppress_warnings:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            result = opf(ppci, ppopt)
    else:
        result = opf(ppci, ppopt)


#    net["_ppc_opf"] = result

    if verbose:
        ppopt['OUT_ALL'] = 1
        printpf(baseMVA=result["baseMVA"],
                bus=result["bus"],
                gen=result["gen"],
                branch=result["branch"],
                f=result["f"],
                success=result["success"],
                et=result["et"],
                fd=stdout,
                ppopt=ppopt)

    if not result["success"]:
        raise OPFNotConverged("Optimal Power Flow did not converge!")

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    mode = net["_options"]["mode"]
    result = _copy_results_ppci_to_ppc(result, ppc, mode=mode)

    #    net["_ppc_opf"] = result
    net["OPF_converged"] = True
    _extract_results(net, result)
    _clean_up(net)
Exemplo n.º 5
0
    def runpp(self, net, max_iteration=10, need_reset=True, **kwargs):
        net_orig = copy.deepcopy(net)
        pp.runpp(net_orig)
        V_orig = net_orig._ppc["internal"]["V"]

        # ---------- pp.run.runpp() -----------------
        t0_start = time()

        t0_options = time()
        passed_parameters = _passed_runpp_parameters(locals())
        _init_runpp_options(net,
                            algorithm="nr",
                            calculate_voltage_angles="auto",
                            init="auto",
                            max_iteration=max_iteration,
                            tolerance_mva=1e-8,
                            trafo_model="t",
                            trafo_loading="current",
                            enforce_q_lims=False,
                            check_connectivity=False,
                            voltage_depend_loads=True,
                            consider_line_temperature=False,
                            passed_parameters=passed_parameters,
                            numba=True,
                            **kwargs)
        _check_bus_index_and_print_warning_if_high(net)
        _check_gen_index_and_print_warning_if_high(net)
        et_options = time() - t0_options

        # ---------- pp.powerflow._powerflow() -----------------
        """
        Gets called by runpp or rundcpp with different arguments.
        """
        # get infos from options
        t0_early_init = time()
        init_results = net["_options"]["init_results"]
        ac = net["_options"]["ac"]
        algorithm = net["_options"]["algorithm"]

        net["converged"] = False
        net["OPF_converged"] = False
        _add_auxiliary_elements(net)

        if not ac or init_results:
            verify_results(net)
        else:
            reset_results(net, all_empty=False)

        # TODO remove this when zip loads are integrated for all PF algorithms
        if algorithm not in ['nr', 'bfsw']:
            net["_options"]["voltage_depend_loads"] = False

        _add_auxiliary_elements(net)
        # convert pandapower net to ppc
        ppc, self.ppci = _pd2ppc(net)

        # pdb.set_trace()
        # store variables
        net["_ppc"] = ppc

        if not "VERBOSE" in kwargs:
            kwargs["VERBOSE"] = 0

        # ----- run the powerflow -----
        options = net["_options"]
        et_early_init = time() - t0_early_init

        # ---------- pp.powerflow._run_pf_algorithm() ----------------
        # ---------- pp.pf.run_newton_raphson_pf.run_newton_raphson_pf() ----------------
        t0 = time()
        t0_init = t0
        et_init_dc = 0.
        if need_reset:
            if isinstance(options["init_va_degree"],
                          str) and options["init_va_degree"] == "dc":
                self.ppci = _run_dc_pf(self.ppci)
                et_init_dc = time() - t0
            if options["enforce_q_lims"]:
                raise NotImplementedError("enforce_q_lims not yet implemented")

            t0_init = time()
            # ---------- pp.pf.run_newton_raphson_pf._run_ac_pf_without_qlims_enforced ----------
            # ppci, success, iterations = _run_ac_pf_without_qlims_enforced(ppci, options)
            makeYbus, pfsoln = _get_numba_functions(self.ppci, options)
            self.baseMVA, self.bus, self.gen, self.branch, self.ref, self.pv, self.pq, _, _, V0, self.ref_gens = _get_pf_variables_from_ppci(
                self.ppci)
            self.ppci, self.Ybus, self.Yf, self.Yt = _get_Y_bus(
                self.ppci, options, makeYbus, self.baseMVA, self.bus,
                self.branch)

            # TODO i have a problem here for the order of the bus / id of bus
            tmp_bus_ind = np.argsort(net.bus.index)
            model = DataModel()
            # model.set_sn_mva(net.sn_mva)
            # model.set_f_hz(net.f_hz)

            # TODO set that elsewhere
            self.converter.set_sn_mva(net.sn_mva)
            self.converter.set_f_hz(net.f_hz)

            # init_but should be called first among all the rest
            model.init_bus(net.bus.iloc[tmp_bus_ind]["vn_kv"].values,
                           net.line.shape[0], net.trafo.shape[0])

            # init the shunts
            line_r, line_x, line_h = self.converter.get_line_param(
                net.line["r_ohm_per_km"].values * net.line["length_km"].values,
                net.line["x_ohm_per_km"].values * net.line["length_km"].values,
                net.line["c_nf_per_km"].values * net.line["length_km"].values,
                net.line["g_us_per_km"].values * net.line["length_km"].values,
                net.bus.loc[net.line["from_bus"]]["vn_kv"],
                net.bus.loc[net.line["to_bus"]]["vn_kv"])
            model.init_powerlines(line_r, line_x, line_h,
                                  net.line["from_bus"].values,
                                  net.line["to_bus"].values)

            # init the shunts
            model.init_shunt(net.shunt["p_mw"].values,
                             net.shunt["q_mvar"].values,
                             net.shunt["bus"].values)
            # init trafo
            if net.trafo.shape[0]:
                trafo_r, trafo_x, trafo_b = self.converter.get_trafo_param(
                    net.trafo["vn_hv_kv"].values, net.trafo["vn_lv_kv"].values,
                    net.trafo["vk_percent"].values,
                    net.trafo["vkr_percent"].values,
                    net.trafo["sn_mva"].values, net.trafo["pfe_kw"].values,
                    net.trafo["i0_percent"].values,
                    net.bus.loc[net.trafo["lv_bus"]]["vn_kv"])

                # trafo_branch = ppc["branch"][net.line.shape[0]:, :]

                tap_step_pct = net.trafo["tap_step_percent"].values
                tap_step_pct[~np.isfinite(tap_step_pct)] = 0.

                tap_pos = net.trafo["tap_pos"].values
                tap_pos[~np.isfinite(tap_pos)] = 0.

                is_tap_hv_side = net.trafo["tap_side"].values == "hv"
                is_tap_hv_side[~np.isfinite(tap_pos)] = True
                model.init_trafo(trafo_r, trafo_x, trafo_b, tap_step_pct,
                                 tap_pos, is_tap_hv_side,
                                 net.trafo["hv_bus"].values,
                                 net.trafo["lv_bus"].values)

            model.init_loads(net.load["p_mw"].values,
                             net.load["q_mvar"].values, net.load["bus"].values)
            model.init_generators(net.gen["p_mw"].values,
                                  net.gen["vm_pu"].values,
                                  net.gen["bus"].values)
            # TODO better way here!
            model.add_slackbus(net.ext_grid["bus"].values)

            # model.init_Ybus()
            # Ybus = model.get_Ybus()

            # be careful, the order is not the same between this and pandapower, you need to change it
            # Ybus_proper_oder = Ybus[np.array([net.bus.index]).T, np.array([net.bus.index])]
            # self.Ybus_proper_oder = self.Ybus
        else:
            pass
            # TODO update self.ppci with new values of generation - load such that  Sbus is properly udpated

        # compute complex bus power injections [generation - load]
        Sbus = _get_Sbus(self.ppci, False)

        # Sbus_me = model.get_Sbus()
        # pdb.set_trace()
        # Sbus_me_r = np.real(Sbus_me)
        # Va0 = np.full(net.bus.shape[0], fill_value=net["_options"]["init_vm_pu"], dtype=np.complex_)
        # Va0[net.ext_grid["bus"].values] = net.ext_grid["vm_pu"].values * np.exp(1j * net.ext_grid["va_degree"].values / 360. * 2 * np.pi)
        #dctheta = model.dc_pf(Sbus_me_r, Va0)
        # self.dctheta = V0[tmp_bus_ind]

        # self.dcYbus = self.ppci["internal"]['Bbus'][np.array([tmp_bus_ind]).T, np.array([tmp_bus_ind])]
        # tmpdc = np.abs(dcYbus - self.dcYbus)
        # pv_me = model.get_pv()
        # pq_me = model.get_pq()
        # pdb.set_trace()

        # run the newton power  flow
        # ------------------- pp.pypower.newtonpf ---------------------
        max_it = options["max_iteration"]
        tol = options['tolerance_mva']
        self.Ybus = sparse.csc_matrix(self.Ybus)
        et_init = time() - t0_init

        t0__ = time()
        if need_reset:
            # reset the solver
            self.solver.reset()
            self.V = 1.0 * copy.deepcopy(V0)
        else:
            # reuse previous voltages
            pass
        self.solver.solve(self.Ybus, self.V, Sbus, self.pv, self.pq, max_it,
                          tol)
        et__ = time() - t0__

        t0_ = time()
        Va = self.solver.get_Va()
        Vm = self.solver.get_Vm()
        self.V = Vm * np.exp(1j * Va)
        J = self.solver.get_J()
        success = self.solver.converged()
        iterations = self.solver.get_nb_iter()
        # timer_Fx_, timer_solve_, timer_initialize_, timer_check_, timer_dSbus_, timer_fillJ_, timer_total_nr_
        timers = self.solver.get_timers()
        et_ = time() - t0_
        # ---------------------- pp.pypower.newtonpf ---------------------

        self.ppci = _store_internal(
            self.ppci, {
                "J": J,
                "Vm_it": None,
                "Va_it": None,
                "bus": self.bus,
                "gen": self.gen,
                "branch": self.branch,
                "baseMVA": self.baseMVA,
                "V": self.V,
                "pv": self.pv,
                "pq": self.pq,
                "ref": self.ref,
                "Sbus": Sbus,
                "ref_gens": self.ref_gens,
                "Ybus": self.Ybus,
                "Yf": self.Yf,
                "Yt": self.Yt,
                "timers": timers,
                "time_get_res": et_,
                "time_solve": et__,
                "time_init": et_init,
                "time_init_dc": et_init_dc,
                "time_early_init": et_early_init,
                "time_options": et_options
            })
        t0_ppci_to_pfsoln = time()
        # update data matrices with solution store in ppci
        # ---------- pp.pf.run_newton_raphson_pf._run_ac_pf_without_qlims_enforced ----------
        self.bus, self.gen, self.branch = ppci_to_pfsoln(self.ppci, options)
        te_ppci_to_pfsoln = time() - t0_ppci_to_pfsoln
        # these are the values from pypower / matlab
        t0_store_res = time()
        et = t0_store_res - t0
        result = _store_results_from_pf_in_ppci(self.ppci, self.bus, self.gen,
                                                self.branch, success,
                                                iterations, et)
        t0_to_net = time()
        et_store_res = t0_to_net - t0_store_res
        # ---------- pp.pf.run_newton_raphson_pf.run_newton_raphson_pf() ----------------
        # ---------- pp.powerflow._run_pf_algorithm() ----------------

        # read the results (=ppci with results) to net
        _ppci_to_net(result, net)
        et_to_net = time() - t0_to_net
        # ---------- pp.powerflow._powerflow() ----------------
        # ---------- pp.run.runpp() -----------------

        # added
        et_start = time() - t0_start
        self.ppci = _store_internal(
            self.ppci, {
                "time_store_res": et_store_res,
                "time_to_net": et_to_net,
                "time_all": et_start,
                "time_ppci_to_pfsoln": te_ppci_to_pfsoln
            })

        has_conv = model.compute_newton(V0[tmp_bus_ind], max_it, tol)
        # check the results
        results_solver = np.max(np.abs(V_orig - self.V))

        Ybus = model.get_Ybus()
        Ybus_proper_oder = Ybus
        self.Ybus_proper_oder = self.Ybus[np.array([tmp_bus_ind]).T,
                                          np.array([tmp_bus_ind])]

        tmp = np.abs(Ybus_proper_oder - self.Ybus_proper_oder)  # > 1e-7
        por, qor, vor, aor = model.get_lineor_res()
        pex, qex, vex, aex = model.get_lineex_res()
        load_p, load_q, load_v = model.get_loads_res()

        np.max(np.abs(por - net_orig.res_line["p_from_mw"]))
        np.max(np.abs(qor - net_orig.res_line["q_from_mvar"]))
        a_or_pp = np.sqrt(net.res_line["p_from_mw"].values**2 +
                          net.res_line["q_from_mvar"].values**2)
        a_or_pp /= np.sqrt(3) * net.bus.loc[net.line["from_bus"].values][
            "vn_kv"].values * net.res_line["vm_from_pu"].values
        np.max(np.abs(a_or_pp - aor))
        np.max(np.abs(a_or_pp - net.res_line["i_from_ka"]))
        np.max(np.abs(a_or_pp - net.res_line["i_from_ka"]))

        Va_me2 = model.get_Va()
        Vm_me2 = model.get_Vm()
        res_vm = np.abs(Vm_me2 - Vm[tmp_bus_ind])
        res_va = np.abs(Va_me2 - Va[tmp_bus_ind])

        # check that if i start the solver on the data
        Sbus_me = model.get_Sbus()
        pv_me = model.get_pv()
        pq_me = model.get_pq()

        np.all(sorted(pv_me) == sorted(net.gen["bus"]))
        np.all(sorted(pq_me) == sorted(tmp_bus_ind[self.pq]))

        plv, qlv, vlv, alv = model.get_trafolv_res()
        phv, qhv, vhv, ahv = model.get_trafohv_res()
        res_trafo = np.abs(plv - net_orig.res_trafo["p_lv_mw"].values)

        res_trafo_q = np.abs(qlv - net_orig.res_trafo["q_lv_mvar"].values)
        # self.solver.reset()
        # self.solver.solve(Ybus, V0, Sbus, pv_me, pq_me, max_it, tol)
        # Va2 = self.solver.get_Va()
        # Vm2 = self.solver.get_Vm()

        pdb.set_trace()