Exemplo n.º 1
0
def _hash_ndarray(
    vals: np.ndarray,
    encoding: str = "utf8",
    hash_key: str = _default_hash_key,
    categorize: bool = True,
) -> np.ndarray:
    """
    See hash_array.__doc__.
    """
    dtype = vals.dtype

    # we'll be working with everything as 64-bit values, so handle this
    # 128-bit value early
    if np.issubdtype(dtype, np.complex128):
        return hash_array(np.real(vals)) + 23 * hash_array(np.imag(vals))

    # First, turn whatever array this is into unsigned 64-bit ints, if we can
    # manage it.
    elif isinstance(dtype, bool):
        vals = vals.astype("u8")
    elif issubclass(dtype.type, (np.datetime64, np.timedelta64)):
        vals = vals.view("i8").astype("u8", copy=False)
    elif issubclass(dtype.type, np.number) and dtype.itemsize <= 8:
        vals = vals.view(f"u{vals.dtype.itemsize}").astype("u8")
    else:
        # With repeated values, its MUCH faster to categorize object dtypes,
        # then hash and rename categories. We allow skipping the categorization
        # when the values are known/likely to be unique.
        if categorize:
            from pandas import (
                Categorical,
                Index,
                factorize,
            )

            codes, categories = factorize(vals, sort=False)
            cat = Categorical(codes,
                              Index(categories),
                              ordered=False,
                              fastpath=True)
            return _hash_categorical(cat, encoding, hash_key)

        try:
            vals = hash_object_array(vals, hash_key, encoding)
        except TypeError:
            # we have mixed types
            vals = hash_object_array(
                vals.astype(str).astype(object), hash_key, encoding)

    # Then, redistribute these 64-bit ints within the space of 64-bit ints
    vals ^= vals >> 30
    vals *= np.uint64(0xBF58476D1CE4E5B9)
    vals ^= vals >> 27
    vals *= np.uint64(0x94D049BB133111EB)
    vals ^= vals >> 31
    return vals
Exemplo n.º 2
0
def hash_array(vals, encoding='utf8', hash_key=None, categorize=True):
    """
    Given a 1d array, return an array of deterministic integers.

    .. versionadded:: 0.19.2

    Parameters
    ----------
    vals : ndarray, Categorical
    encoding : string, default 'utf8'
        encoding for data & key when strings
    hash_key : string key to encode, default to _default_hash_key
    categorize : bool, default True
        Whether to first categorize object arrays before hashing. This is more
        efficient when the array contains duplicate values.

        .. versionadded:: 0.20.0

    Returns
    -------
    1d uint64 numpy array of hash values, same length as the vals

    """

    if not hasattr(vals, 'dtype'):
        raise TypeError("must pass a ndarray-like")
    dtype = vals.dtype

    if hash_key is None:
        hash_key = _default_hash_key

    # For categoricals, we hash the categories, then remap the codes to the
    # hash values. (This check is above the complex check so that we don't ask
    # numpy if categorical is a subdtype of complex, as it will choke).
    if is_categorical_dtype(dtype):
        return _hash_categorical(vals, encoding, hash_key)
    elif is_extension_array_dtype(dtype):
        vals, _ = vals._values_for_factorize()
        dtype = vals.dtype

    # we'll be working with everything as 64-bit values, so handle this
    # 128-bit value early
    if np.issubdtype(dtype, np.complex128):
        return hash_array(vals.real) + 23 * hash_array(vals.imag)

    # First, turn whatever array this is into unsigned 64-bit ints, if we can
    # manage it.
    elif isinstance(dtype, np.bool):
        vals = vals.astype('u8')
    elif issubclass(dtype.type, (np.datetime64, np.timedelta64)):
        vals = vals.view('i8').astype('u8', copy=False)
    elif issubclass(dtype.type, np.number) and dtype.itemsize <= 8:
        vals = vals.view('u{}'.format(vals.dtype.itemsize)).astype('u8')
    else:
        # With repeated values, its MUCH faster to categorize object dtypes,
        # then hash and rename categories. We allow skipping the categorization
        # when the values are known/likely to be unique.
        if categorize:
            from pandas import factorize, Categorical, Index
            codes, categories = factorize(vals, sort=False)
            cat = Categorical(codes, Index(categories),
                              ordered=False, fastpath=True)
            return _hash_categorical(cat, encoding, hash_key)

        try:
            vals = hashing.hash_object_array(vals, hash_key, encoding)
        except TypeError:
            # we have mixed types
            vals = hashing.hash_object_array(vals.astype(str).astype(object),
                                             hash_key, encoding)

    # Then, redistribute these 64-bit ints within the space of 64-bit ints
    vals ^= vals >> 30
    vals *= np.uint64(0xbf58476d1ce4e5b9)
    vals ^= vals >> 27
    vals *= np.uint64(0x94d049bb133111eb)
    vals ^= vals >> 31
    return vals
Exemplo n.º 3
0
def hash_array(
    vals,
    encoding: str = "utf8",
    hash_key: str = _default_hash_key,
    categorize: bool = True,
):
    """
    Given a 1d array, return an array of deterministic integers.

    Parameters
    ----------
    vals : ndarray, Categorical
    encoding : str, default 'utf8'
        Encoding for area_data & key when strings.
    hash_key : str, default _default_hash_key
        Hash_key for string key to encode.
    categorize : bool, default True
        Whether to first categorize object arrays before hashing. This is more
        efficient when the array contains duplicate values.

    Returns
    -------
    1d uint64 numpy array of hash values, same length as the vals
    """
    if not hasattr(vals, "dtype"):
        raise TypeError("must pass a ndarray-like")
    dtype = vals.dtype

    # For categoricals, we hash the categories, then remap the codes to the
    # hash values. (This check is above the complex check so that we don't ask
    # numpy if categorical is a subdtype of complex, as it will choke).
    if is_categorical_dtype(dtype):
        return _hash_categorical(vals, encoding, hash_key)
    elif is_extension_array_dtype(dtype):
        vals, _ = vals._values_for_factorize()
        dtype = vals.dtype

    # we'll be working with everything as 64-bit values, so handle this
    # 128-bit value early
    if np.issubdtype(dtype, np.complex128):
        return hash_array(np.real(vals)) + 23 * hash_array(np.imag(vals))

    # First, turn whatever array this is into unsigned 64-bit ints, if we can
    # manage it.
    elif isinstance(dtype, bool):
        vals = vals.astype("u8")
    elif issubclass(dtype.type, (np.datetime64, np.timedelta64)):
        vals = vals.view("i8").astype("u8", copy=False)
    elif issubclass(dtype.type, np.number) and dtype.itemsize <= 8:
        vals = vals.view(f"u{vals.dtype.itemsize}").astype("u8")
    else:
        # With repeated values, its MUCH faster to categorize object dtypes,
        # then hash and rename categories. We allow skipping the categorization
        # when the values are known/likely to be unique.
        if categorize:
            from pandas import Categorical, Index, factorize

            codes, categories = factorize(vals, sort=False)
            cat = Categorical(codes,
                              Index(categories),
                              ordered=False,
                              fastpath=True)
            return _hash_categorical(cat, encoding, hash_key)

        try:
            vals = hashing.hash_object_array(vals, hash_key, encoding)
        except TypeError:
            # we have mixed types
            vals = hashing.hash_object_array(
                vals.astype(str).astype(object), hash_key, encoding)

    # Then, redistribute these 64-bit ints within the space of 64-bit ints
    vals ^= vals >> 30
    vals *= np.uint64(0xBF58476D1CE4E5B9)
    vals ^= vals >> 27
    vals *= np.uint64(0x94D049BB133111EB)
    vals ^= vals >> 31
    return vals