def test_get_loc_closed(self, closed):
     tree = IntervalTree([0], [1], closed=closed)
     for p, errors in [(0, tree.open_left), (1, tree.open_right)]:
         if errors:
             with pytest.raises(KeyError):
                 tree.get_loc(p)
         else:
             tm.assert_numpy_array_equal(tree.get_loc(p),
                                         np.array([0], dtype='int64'))
Exemplo n.º 2
0
 def test_get_loc_closed(self, closed):
     tree = IntervalTree([0], [1], closed=closed)
     for p, errors in [(0, tree.open_left), (1, tree.open_right)]:
         if errors:
             with pytest.raises(KeyError, match=str(p)):
                 tree.get_loc(p)
         else:
             result = tree.get_loc(p)
             expected = np.array([0], dtype="intp")
             tm.assert_numpy_array_equal(result, expected)
Exemplo n.º 3
0
 def test_get_loc_closed(self, closed):
     tree = IntervalTree([0], [1], closed=closed)
     for p, errors in [(0, tree.open_left),
                       (1, tree.open_right)]:
         if errors:
             with pytest.raises(KeyError):
                 tree.get_loc(p)
         else:
             tm.assert_numpy_array_equal(tree.get_loc(p),
                                         np.array([0], dtype='int64'))
Exemplo n.º 4
0
 def test_get_loc_closed(self):
     for closed in ['left', 'right', 'both', 'neither']:
         tree = IntervalTree([0], [1], closed=closed)
         for p, errors in [(0, tree.open_left), (1, tree.open_right)]:
             if errors:
                 with self.assertRaises(KeyError):
                     tree.get_loc(p)
             else:
                 self.assert_numpy_array_equal(tree.get_loc(p),
                                               np.array([0], dtype='int64'))
Exemplo n.º 5
0
    def test_get_indexer_non_unique_overflow(self, dtype, target_value, target_dtype):
        left, right = np.array([0, 2], dtype=dtype), np.array([1, 3], dtype=dtype)
        tree = IntervalTree(left, right)
        target = np.array([target_value], dtype=target_dtype)

        result_indexer, result_missing = tree.get_indexer_non_unique(target)
        expected_indexer = np.array([-1], dtype="intp")
        tm.assert_numpy_array_equal(result_indexer, expected_indexer)

        expected_missing = np.array([0], dtype="intp")
        tm.assert_numpy_array_equal(result_missing, expected_missing)
Exemplo n.º 6
0
    def test_duplicates(self):
        tree = IntervalTree([0, 0, 0], [1, 1, 1])
        tm.assert_numpy_array_equal(np.sort(tree.get_loc(0.5)),
                                    np.array([0, 1, 2], dtype='int64'))

        with pytest.raises(KeyError):
            tree.get_indexer(np.array([0.5]))

        indexer, missing = tree.get_indexer_non_unique(np.array([0.5]))
        tm.assert_numpy_array_equal(np.sort(indexer),
                                    np.array([0, 1, 2], dtype='int64'))
        tm.assert_numpy_array_equal(missing, np.array([], dtype='int64'))
Exemplo n.º 7
0
    def test_get_indexer_closed(self, closed, leaf_size):
        x = np.arange(1000, dtype='float64')
        found = x.astype('intp')
        not_found = (-1 * np.ones(1000)).astype('intp')

        tree = IntervalTree(x, x + 0.5, closed=closed, leaf_size=leaf_size)
        tm.assert_numpy_array_equal(found, tree.get_indexer(x + 0.25))

        expected = found if tree.closed_left else not_found
        tm.assert_numpy_array_equal(expected, tree.get_indexer(x + 0.0))

        expected = found if tree.closed_right else not_found
        tm.assert_numpy_array_equal(expected, tree.get_indexer(x + 0.5))
Exemplo n.º 8
0
    def test_get_indexer_closed(self, closed, leaf_size):
        x = np.arange(1000, dtype='float64')
        found = x.astype('intp')
        not_found = (-1 * np.ones(1000)).astype('intp')

        tree = IntervalTree(x, x + 0.5, closed=closed, leaf_size=leaf_size)
        tm.assert_numpy_array_equal(found, tree.get_indexer(x + 0.25))

        expected = found if tree.closed_left else not_found
        tm.assert_numpy_array_equal(expected, tree.get_indexer(x + 0.0))

        expected = found if tree.closed_right else not_found
        tm.assert_numpy_array_equal(expected, tree.get_indexer(x + 0.5))
Exemplo n.º 9
0
    def test_inf_bound_infinite_recursion(self, left, right, expected):
        # GH 46658

        tree = IntervalTree(left * 101, right * 101)

        result = tree.root.pivot
        assert result == expected
Exemplo n.º 10
0
 def test_is_overlapping_endpoints(self, closed, order):
     """shared endpoints are marked as overlapping"""
     # GH 23309
     left, right = np.arange(3, dtype="int64"), np.arange(1, 4)
     tree = IntervalTree(left[order], right[order], closed=closed)
     result = tree.is_overlapping
     expected = closed == "both"
     assert result is expected
Exemplo n.º 11
0
 def setUp(self):
     gentree = lambda dtype: IntervalTree(np.arange(5, dtype=dtype),
                                          np.arange(5, dtype=dtype) + 2)
     self.tree = gentree('int64')
     self.trees = {
         dtype: gentree(dtype)
         for dtype in ['int32', 'int64', 'float32', 'float64']
     }
Exemplo n.º 12
0
    def test_interval_tree_error_and_warning(self):
        # GH 40245

        msg = (
            "Deprecated argument `closed` cannot "
            "be passed if argument `inclusive` is not None"
        )
        with pytest.raises(ValueError, match=msg):
            left, right = np.arange(10), [np.iinfo(np.int64).max] * 10
            IntervalTree(left, right, closed="both", inclusive="both")

        msg = "Argument `closed` is deprecated in favor of `inclusive`"
        with tm.assert_produces_warning(
            FutureWarning, match=msg, check_stacklevel=False
        ):
            left, right = np.arange(10), [np.iinfo(np.int64).max] * 10
            IntervalTree(left, right, closed="both")
Exemplo n.º 13
0
    def test_duplicates(self, dtype):
        left = np.array([0, 0, 0], dtype=dtype)
        tree = IntervalTree(left, left + 1)

        with pytest.raises(
            KeyError, match="'indexer does not intersect a unique set of intervals'"
        ):
            tree.get_indexer(np.array([0.5]))

        indexer, missing = tree.get_indexer_non_unique(np.array([0.5]))
        result = np.sort(indexer)
        expected = np.array([0, 1, 2], dtype="intp")
        tm.assert_numpy_array_equal(result, expected)

        result = missing
        expected = np.array([], dtype="intp")
        tm.assert_numpy_array_equal(result, expected)
Exemplo n.º 14
0
    def test_get_indexer_closed(self):
        x = np.arange(1000, dtype='intp')
        found = x
        not_found = (-1 * np.ones(1000)).astype('intp')
        for leaf_size in [1, 10, 100, 10000]:
            for closed in ['left', 'right', 'both', 'neither']:
                tree = IntervalTree(x, x + 0.5, closed=closed,
                                    leaf_size=leaf_size)
                self.assert_numpy_array_equal(found,
                                              tree.get_indexer(x + 0.25))

                expected = found if tree.closed_left else not_found
                self.assert_numpy_array_equal(expected,
                                              tree.get_indexer(x + 0.0))

                expected = found if tree.closed_right else not_found
                self.assert_numpy_array_equal(expected,
                                              tree.get_indexer(x + 0.5))
Exemplo n.º 15
0
    def test_construction_overflow(self):
        # GH 25485
        left, right = np.arange(101, dtype="int64"), [np.iinfo(np.int64).max] * 101
        tree = IntervalTree(left, right)

        # pivot should be average of left/right medians
        result = tree.root.pivot
        expected = (50 + np.iinfo(np.int64).max) / 2
        assert result == expected
Exemplo n.º 16
0
    def test_duplicates(self, dtype):
        left = np.array([0, 0, 0], dtype=dtype)
        tree = IntervalTree(left, left + 1)

        result = np.sort(tree.get_loc(0.5))
        expected = np.array([0, 1, 2], dtype='intp')
        tm.assert_numpy_array_equal(result, expected)

        with pytest.raises(KeyError):
            tree.get_indexer(np.array([0.5]))

        indexer, missing = tree.get_indexer_non_unique(np.array([0.5]))
        result = np.sort(indexer)
        expected = np.array([0, 1, 2], dtype='intp')
        tm.assert_numpy_array_equal(result, expected)

        result = missing
        expected = np.array([], dtype='intp')
        tm.assert_numpy_array_equal(result, expected)
Exemplo n.º 17
0
    def test_duplicates(self):
        tree = IntervalTree([0, 0, 0], [1, 1, 1])
        tm.assert_numpy_array_equal(np.sort(tree.get_loc(0.5)),
                                    np.array([0, 1, 2], dtype='int64'))

        with pytest.raises(KeyError):
            tree.get_indexer(np.array([0.5]))

        indexer, missing = tree.get_indexer_non_unique(np.array([0.5]))
        tm.assert_numpy_array_equal(np.sort(indexer),
                                    np.array([0, 1, 2], dtype='int64'))
        tm.assert_numpy_array_equal(missing, np.array([], dtype='int64'))
Exemplo n.º 18
0
    def test_duplicates(self, dtype):
        left = np.array([0, 0, 0], dtype=dtype)
        tree = IntervalTree(left, left + 1)

        result = np.sort(tree.get_loc(0.5))
        expected = np.array([0, 1, 2], dtype='intp')
        tm.assert_numpy_array_equal(result, expected)

        with pytest.raises(KeyError):
            tree.get_indexer(np.array([0.5]))

        indexer, missing = tree.get_indexer_non_unique(np.array([0.5]))
        result = np.sort(indexer)
        expected = np.array([0, 1, 2], dtype='intp')
        tm.assert_numpy_array_equal(result, expected)

        result = missing
        expected = np.array([], dtype='intp')
        tm.assert_numpy_array_equal(result, expected)
Exemplo n.º 19
0
 def _engine(self):
     left = self._maybe_convert_i8(self.left)
     right = self._maybe_convert_i8(self.right)
     return IntervalTree(left, right, closed=self.closed)
Exemplo n.º 20
0
 def _engine(self):
     return IntervalTree(self.left, self.right, closed=self.closed)
 def gentree(dtype):
     left = np.arange(5, dtype=dtype)
     right = left + 2
     return IntervalTree(left, right)
Exemplo n.º 22
0
def tree(request, leaf_size):
    left = request.param
    return IntervalTree(left, left + 2, leaf_size=leaf_size)
Exemplo n.º 23
0
def tree(dtype):
    left = np.arange(5, dtype=dtype)
    return IntervalTree(left, left + 2)
Exemplo n.º 24
0
def tree(request, leaf_size):
    left = request.param
    return IntervalTree(left, left + 2, leaf_size=leaf_size, inclusive="right")
Exemplo n.º 25
0
 def _engine(self) -> IntervalTree:  # type: ignore[override]
     left = self._maybe_convert_i8(self.left)
     right = self._maybe_convert_i8(self.right)
     return IntervalTree(left, right, closed=self.closed)
Exemplo n.º 26
0
 def test_is_overlapping_trivial(self, closed, left, right):
     # GH 23309
     tree = IntervalTree(left, right, closed=closed)
     assert tree.is_overlapping is False
Exemplo n.º 27
0
 def test_is_overlapping(self, closed, order, left, right, expected):
     # GH 23309
     tree = IntervalTree(left[order], right[order], closed=closed)
     result = tree.is_overlapping
     assert result is expected