Exemplo n.º 1
0
    def __init__(self,
                 start_session,
                 end_session,
                 trading_calendar,
                 capital_base=DEFAULT_CAPITAL_BASE,
                 emission_rate='daily',
                 data_frequency='daily',
                 arena='backtest'):

        assert type(start_session) == pd.Timestamp
        assert type(end_session) == pd.Timestamp

        assert trading_calendar is not None, \
            "Must pass in trading calendar!"
        assert start_session <= end_session, \
            "Period start falls after period end."
        assert start_session <= trading_calendar.last_trading_session, \
            "Period start falls after the last known trading day."
        assert end_session >= trading_calendar.first_trading_session, \
            "Period end falls before the first known trading day."

        # chop off any minutes or hours on the given start and end dates,
        # as we only support session labels here (and we represent session
        # labels as midnight UTC).
        self._start_session = normalize_date(start_session)
        self._end_session = normalize_date(end_session)
        self._capital_base = capital_base

        self._emission_rate = emission_rate
        self._data_frequency = data_frequency

        # copied to algorithm's environment for runtime access
        self._arena = arena

        self._trading_calendar = trading_calendar

        if not trading_calendar.is_session(self._start_session):
            # if the start date is not a valid session in this calendar,
            # push it forward to the first valid session
            self._start_session = trading_calendar.minute_to_session_label(
                self._start_session)

        if not trading_calendar.is_session(self._end_session):
            # if the end date is not a valid session in this calendar,
            # pull it backward to the last valid session before the given
            # end date.
            self._end_session = trading_calendar.minute_to_session_label(
                self._end_session, direction="previous")

        self._first_open = trading_calendar.open_and_close_for_session(
            self._start_session)[0]
        self._last_close = trading_calendar.open_and_close_for_session(
            self._end_session)[1]
Exemplo n.º 2
0
    def _process_orders(self, df_ord):
        # assign to df and reduce the number of fields
        df = df_ord.copy()
        fields = [
            'created_at', 'average_price', 'cumulative_quantity', 'fees',
            'symbol', 'side'
        ]
        df = df[fields]

        # convert types
        for field in ['average_price', 'cumulative_quantity', 'fees']:
            df[field] = pd.to_numeric(df[field])
        for field in ['created_at']:
            df[field] = pd.to_datetime(df[field])

        # add days
        df['date'] = df['created_at'].apply(lambda x: normalize_date(x))

        # rename columns for consistency
        df.rename(columns={'cumulative_quantity': 'current_size'},
                  inplace=True)

        # quantity accounting for side of transaction for cumsum later
        df['signed_size'] = np.where(df.side == 'buy', df['current_size'],
                                     -df['current_size'])
        df['signed_size'] = df['signed_size'].astype(np.int64)

        return df
Exemplo n.º 3
0
    def handle_minute_close(self, dt, data_portal):
        """
        Handles the close of the given minute in minute emission.

        Parameters
        __________
        dt : Timestamp
            The minute that is ending

        Returns
        _______
        A minute perf packet.
        """
        self.position_tracker.sync_last_sale_prices(dt, False, data_portal)
        self.update_performance()
        todays_date = normalize_date(dt)
        account = self.get_account(False)

        bench_returns = self.all_benchmark_returns.loc[todays_date:dt]
        # cumulative returns
        bench_since_open = (1. + bench_returns).prod() - 1

        self.cumulative_risk_metrics.update(todays_date,
                                            self.todays_performance.returns,
                                            bench_since_open, account.leverage)

        minute_packet = self.to_dict(emission_type='minute')
        return minute_packet
Exemplo n.º 4
0
    def _process_dividends(self, df_div):
        df = df_div.copy()

        # convert types
        for field in ['amount', 'position', 'rate']:
            df[field] = pd.to_numeric(df[field])
        for field in ['paid_at', 'payable_date']:
            df[field] = pd.to_datetime(df[field])

        # add days
        df['date'] = df['paid_at'].apply(lambda x: normalize_date(x))
        return df
Exemplo n.º 5
0
    def handle_market_close_daily(self):
        """
        Function called after handle_data when running with daily emission
        rate.
        """
        self.update_performance()
        completed_date = normalize_date(self.market_close)

        # add the return results from today to the returns series
        self.returns[completed_date] = self.todays_performance.returns

        # update risk metrics for cumulative performance
        self.cumulative_risk_metrics.update(
            completed_date, self.todays_performance.returns,
            self.all_benchmark_returns[completed_date])

        # increment the day counter before we move markers forward.
        self.day_count += 1.0

        # Take a snapshot of our current performance to return to the
        # browser.
        daily_update = self.to_dict()

        # On the last day of the test, don't create tomorrow's performance
        # period.  We may not be able to find the next trading day if we're at
        # the end of our historical data
        if self.market_close >= self.last_close:
            return daily_update

        # move the market day markers forward
        self.market_open, self.market_close = \
            trading.environment.next_open_and_close(self.market_open)

        # Roll over positions to current day.
        self.todays_performance.rollover()
        self.todays_performance.period_open = self.market_open
        self.todays_performance.period_close = self.market_close

        self.check_upcoming_dividends(completed_date)

        return daily_update
Exemplo n.º 6
0
    def handle_minute_close(self, dt):
        self.update_performance()
        todays_date = normalize_date(dt)

        minute_returns = self.minute_performance.returns
        self.minute_performance.rollover()
        # the intraday risk is calculated on top of minute performance
        # returns for the bench and the algo
        self.intraday_risk_metrics.update(dt, minute_returns,
                                          self.all_benchmark_returns[dt])

        bench_since_open = \
            self.intraday_risk_metrics.benchmark_cumulative_returns[dt]

        self.cumulative_risk_metrics.update(todays_date,
                                            self.todays_performance.returns,
                                            bench_since_open)

        # if this is the close, save the returns objects for cumulative risk
        # calculations and update dividends for the next day.
        if dt == self.market_close:
            self.check_upcoming_dividends(todays_date)
            self.returns[todays_date] = self.todays_performance.returns
Exemplo n.º 7
0
    def __init__(self, sim_params,
                 returns_frequency=None,
                 create_first_day_stats=False):
        """
        - @returns_frequency allows for configuration of the whether
        the benchmark and algorithm returns are in units of minutes or days,
        if `None` defaults to the `emission_rate` in `sim_params`.
        """

        self.treasury_curves = trading.environment.treasury_curves
        self.start_date = sim_params.period_start.replace(
            hour=0, minute=0, second=0, microsecond=0
        )
        self.end_date = sim_params.period_end.replace(
            hour=0, minute=0, second=0, microsecond=0
        )

        self.trading_days = trading.environment.days_in_range(
            self.start_date,
            self.end_date)

        # Hold on to the trading day before the start,
        # used for index of the zero return value when forcing returns
        # on the first day.
        self.day_before_start = self.start_date - \
            trading.environment.trading_days.freq

        last_day = normalize_date(sim_params.period_end)
        if last_day not in self.trading_days:
            last_day = pd.DatetimeIndex(
                [last_day]
            )
            self.trading_days = self.trading_days.append(last_day)

        self.sim_params = sim_params

        self.create_first_day_stats = create_first_day_stats

        if returns_frequency is None:
            returns_frequency = self.sim_params.emission_rate

        self.returns_frequency = returns_frequency

        if returns_frequency == 'daily':
            cont_index = self.get_daily_index()
        elif returns_frequency == 'minute':
            cont_index = self.get_minute_index(sim_params)

        self.cont_index = cont_index

        self.algorithm_returns_cont = pd.Series(index=cont_index)
        self.benchmark_returns_cont = pd.Series(index=cont_index)
        self.mean_returns_cont = pd.Series(index=cont_index)
        self.annualized_mean_returns_cont = pd.Series(index=cont_index)
        self.mean_benchmark_returns_cont = pd.Series(index=cont_index)
        self.annualized_mean_benchmark_returns_cont = pd.Series(
            index=cont_index)

        # The returns at a given time are read and reset from the respective
        # returns container.
        self.algorithm_returns = None
        self.benchmark_returns = None
        self.mean_returns = None
        self.annualized_mean_returns = None
        self.mean_benchmark_returns = None
        self.annualized_mean_benchmark_returns = None

        self.algorithm_cumulative_returns = pd.Series(index=cont_index)
        self.benchmark_cumulative_returns = pd.Series(index=cont_index)
        self.excess_returns = pd.Series(index=cont_index)

        self.latest_dt = cont_index[0]

        self.metrics = pd.DataFrame(index=cont_index,
                                    columns=self.METRIC_NAMES)

        self.drawdowns = pd.Series(index=cont_index)
        self.max_drawdowns = pd.Series(index=cont_index)
        self.max_drawdown = 0
        self.current_max = -np.inf
        self.daily_treasury = pd.Series(index=self.trading_days)
        self.treasury_period_return = np.nan

        self.num_trading_days = 0
Exemplo n.º 8
0
    def transform(self):
        """
        Main generator work loop.
        """
        algo = self.algo
        perf_tracker = algo.perf_tracker
        emission_rate = perf_tracker.emission_rate

        def every_bar(dt_to_use,
                      current_data=self.current_data,
                      handle_data=algo.event_manager.handle_data):
            # called every tick (minute or day).
            algo.on_dt_changed(dt_to_use)

            for capital_change in calculate_minute_capital_changes(dt_to_use):
                yield capital_change

            self.simulation_dt = dt_to_use

            blotter = algo.blotter

            # handle any transactions and commissions coming out new orders
            # placed in the last bar
            new_transactions, new_commissions, closed_orders = \
                blotter.get_transactions(current_data)

            blotter.prune_orders(closed_orders)

            for transaction in new_transactions:
                perf_tracker.process_transaction(transaction)

                # since this order was modified, record it
                order = blotter.orders[transaction.order_id]
                perf_tracker.process_order(order)

            if new_commissions:
                for commission in new_commissions:
                    perf_tracker.process_commission(commission)

            handle_data(algo, current_data, dt_to_use)

            # grab any new orders from the blotter, then clear the list.
            # this includes cancelled orders.
            new_orders = blotter.new_orders
            blotter.new_orders = []

            # if we have any new orders, record them so that we know
            # in what perf period they were placed.
            if new_orders:
                for new_order in new_orders:
                    perf_tracker.process_order(new_order)

            algo.portfolio_needs_update = True
            algo.account_needs_update = True
            algo.performance_needs_update = True

        def once_a_day(midnight_dt,
                       current_data=self.current_data,
                       data_portal=self.data_portal):

            # set all the timestamps
            self.simulation_dt = midnight_dt
            algo.on_dt_changed(midnight_dt)

            # process any capital changes that came overnight
            for capital_change in algo.calculate_capital_changes(
                    midnight_dt, emission_rate=emission_rate,
                    is_interday=True):
                yield capital_change

            # handle any splits that impact any positions or any open orders.
            assets_we_care_about = \
                viewkeys(perf_tracker.position_tracker.positions) | \
                viewkeys(algo.blotter.open_orders)

            if assets_we_care_about:
                splits = data_portal.get_splits(assets_we_care_about,
                                                midnight_dt)
                if splits:
                    algo.blotter.process_splits(splits)
                    perf_tracker.position_tracker.handle_splits(splits)

        def handle_benchmark(date, benchmark_source=self.benchmark_source):
            perf_tracker.all_benchmark_returns[
                date] = benchmark_source.get_value(date)

        def on_exit():
            # Remove references to algo, data portal, et al to break cycles
            # and ensure deterministic cleanup of these objects when the
            # simulation finishes.
            self.algo = None
            self.benchmark_source = self.current_data = self.data_portal = None

        with ExitStack() as stack:
            stack.callback(on_exit)
            stack.enter_context(self.processor)
            stack.enter_context(ZiplineAPI(self.algo))

            if algo.data_frequency == 'minute':

                def execute_order_cancellation_policy():
                    algo.blotter.execute_cancel_policy(SESSION_END)

                def calculate_minute_capital_changes(dt):
                    # process any capital changes that came between the last
                    # and current minutes
                    return algo.calculate_capital_changes(
                        dt, emission_rate=emission_rate, is_interday=False)
            else:

                def execute_order_cancellation_policy():
                    pass

                def calculate_minute_capital_changes(dt):
                    return []

            for dt, action in self.clock:
                if action == BAR:
                    for capital_change_packet in every_bar(dt):
                        yield capital_change_packet
                elif action == SESSION_START:
                    for capital_change_packet in once_a_day(dt):
                        yield capital_change_packet
                elif action == SESSION_END:
                    # End of the session.
                    positions = perf_tracker.position_tracker.positions
                    position_assets = algo.asset_finder.retrieve_all(positions)
                    self._cleanup_expired_assets(dt, position_assets)

                    if emission_rate == 'daily':
                        handle_benchmark(normalize_date(dt))
                    else:
                        # If the emission rate is minutely then the performance
                        # update already happened by this point, so if any
                        # equities were just auto closed do another update.
                        perf_tracker.update_performance()
                    execute_order_cancellation_policy()
                    algo.validate_account_controls()

                    yield self._get_daily_message(dt, algo, perf_tracker)
                elif action == BEFORE_TRADING_START_BAR:
                    self.simulation_dt = dt
                    algo.on_dt_changed(dt)
                    algo.before_trading_start(self.current_data)
                elif action == MINUTE_END:
                    handle_benchmark(dt)
                    minute_msg = \
                        self._get_minute_message(dt, algo, perf_tracker)

                    yield minute_msg

        risk_message = perf_tracker.handle_simulation_end()
        yield risk_message
Exemplo n.º 9
0
    def _get_adjustments_in_range(self, asset, dts, field):
        """
        Get the Float64Multiply objects to pass to an AdjustedArrayWindow.

        For the use of AdjustedArrayWindow in the loader, which looks back
        from current simulation time back to a window of data the dictionary is
        structured with:
        - the key into the dictionary for adjustments is the location of the
        day from which the window is being viewed.
        - the start of all multiply objects is always 0 (in each window all
          adjustments are overlapping)
        - the end of the multiply object is the location before the calendar
          location of the adjustment action, making all days before the event
          adjusted.

        Parameters
        ----------
        asset : Asset
            The assets for which to get adjustments.
        dts : iterable of datetime64-like
            The dts for which adjustment data is needed.
        field : str
            OHLCV field for which to get the adjustments.

        Returns
        -------
        out : dict[loc -> Float64Multiply]
            The adjustments as a dict of loc -> Float64Multiply
        """
        sid = int(asset)
        start = normalize_date(dts[0])
        end = normalize_date(dts[-1])
        adjs = {}
        #if field != 'volume':
        # # 限定调整字段
        if field in ('open', 'high', 'low', 'close'):
            mergers = self._adjustments_reader.get_adjustments_for_sid(
                'mergers', sid)
            for m in mergers:
                dt = m[0]
                if start < dt <= end:
                    end_loc = dts.searchsorted(dt)
                    adj_loc = end_loc
                    mult = Float64Multiply(0, end_loc - 1, 0, 0, m[1])
                    try:
                        adjs[adj_loc].append(mult)
                    except KeyError:
                        adjs[adj_loc] = [mult]
            divs = self._adjustments_reader.get_adjustments_for_sid(
                'dividends', sid)
            for d in divs:
                dt = d[0]
                if start < dt <= end:
                    end_loc = dts.searchsorted(dt)
                    adj_loc = end_loc
                    mult = Float64Multiply(0, end_loc - 1, 0, 0, d[1])
                    try:
                        adjs[adj_loc].append(mult)
                    except KeyError:
                        adjs[adj_loc] = [mult]
        splits = self._adjustments_reader.get_adjustments_for_sid(
            'splits', sid)
        for s in splits:
            dt = s[0]
            if start < dt <= end:
                if field == 'volume':
                    ratio = 1.0 / s[1]
                # # else -> elif field in ('open', 'high', 'low', 'close')
                elif field in ('open', 'high', 'low', 'close'):
                    ratio = s[1]
                # # 使用原值 1
                else:
                    ratio = 1
                end_loc = dts.searchsorted(dt)
                adj_loc = end_loc
                mult = Float64Multiply(0, end_loc - 1, 0, 0, ratio)
                try:
                    adjs[adj_loc].append(mult)
                except KeyError:
                    adjs[adj_loc] = [mult]
        return adjs
Exemplo n.º 10
0
    def __init__(self,
                 sim_params,
                 trading_calendar,
                 create_first_day_stats=False):
        self.trading_calendar = trading_calendar
        self.start_session = sim_params.start_session
        self.end_session = sim_params.end_session

        self.sessions = trading_calendar.sessions_in_range(
            self.start_session, self.end_session)

        # Hold on to the trading day before the start,
        # used for index of the zero return value when forcing returns
        # on the first day.
        self.day_before_start = self.start_session - self.sessions.freq

        last_day = normalize_date(sim_params.end_session)
        if last_day not in self.sessions:
            last_day = pd.tseries.index.DatetimeIndex([last_day])
            self.sessions = self.sessions.append(last_day)

        self.sim_params = sim_params

        self.create_first_day_stats = create_first_day_stats

        cont_index = self.sessions

        self.cont_index = cont_index
        self.cont_len = len(self.cont_index)

        empty_cont = np.full(self.cont_len, np.nan)

        self.algorithm_returns_cont = empty_cont.copy()
        self.benchmark_returns_cont = empty_cont.copy()
        self.algorithm_cumulative_leverages_cont = empty_cont.copy()
        self.mean_returns_cont = empty_cont.copy()
        self.annualized_mean_returns_cont = empty_cont.copy()
        self.mean_benchmark_returns_cont = empty_cont.copy()
        self.annualized_mean_benchmark_returns_cont = empty_cont.copy()

        # The returns at a given time are read and reset from the respective
        # returns container.
        self.algorithm_returns = None
        self.benchmark_returns = None
        self.mean_returns = None
        self.annualized_mean_returns = None
        self.mean_benchmark_returns = None
        self.annualized_mean_benchmark_returns = None

        self.algorithm_cumulative_returns = empty_cont.copy()
        self.benchmark_cumulative_returns = empty_cont.copy()
        self.algorithm_cumulative_leverages = empty_cont.copy()
        self.excess_returns = empty_cont.copy()

        self.latest_dt_loc = 0
        self.latest_dt = cont_index[0]

        self.benchmark_volatility = empty_cont.copy()
        self.algorithm_volatility = empty_cont.copy()
        self.beta = empty_cont.copy()
        self.alpha = empty_cont.copy()
        self.sharpe = empty_cont.copy()
        self.downside_risk = empty_cont.copy()
        self.sortino = empty_cont.copy()

        self.drawdowns = empty_cont.copy()
        self.max_drawdowns = empty_cont.copy()
        self.max_drawdown = 0
        self.max_leverages = empty_cont.copy()
        self.max_leverage = 0
        self.current_max = -np.inf
        self.daily_treasury = pd.Series(index=self.sessions)
        self.treasury_period_return = np.nan

        self.num_trading_days = 0
Exemplo n.º 11
0
    def __init__(self, sim_params):

        self.sim_params = sim_params

        self.period_start = self.sim_params.period_start
        self.period_end = self.sim_params.period_end
        self.last_close = self.sim_params.last_close
        first_day = self.sim_params.first_open
        self.market_open, self.market_close = \
            trading.environment.get_open_and_close(first_day)
        self.total_days = self.sim_params.days_in_period
        self.capital_base = self.sim_params.capital_base
        self.emission_rate = sim_params.emission_rate

        all_trading_days = trading.environment.trading_days
        mask = ((all_trading_days >= normalize_date(self.period_start)) &
                (all_trading_days <= normalize_date(self.period_end)))

        self.trading_days = all_trading_days[mask]

        self.dividend_frame = pd.DataFrame()
        self._dividend_count = 0

        self.perf_periods = []

        if self.emission_rate == 'daily':
            self.all_benchmark_returns = pd.Series(index=self.trading_days)
            self.intraday_risk_metrics = None
            self.cumulative_risk_metrics = \
                risk.RiskMetricsCumulative(self.sim_params)

        elif self.emission_rate == 'minute':
            self.all_benchmark_returns = pd.Series(
                index=pd.date_range(self.sim_params.first_open,
                                    self.sim_params.last_close,
                                    freq='Min'))
            self.intraday_risk_metrics = \
                risk.RiskMetricsCumulative(self.sim_params)

            self.cumulative_risk_metrics = \
                risk.RiskMetricsCumulative(self.sim_params,
                                           returns_frequency='daily',
                                           create_first_day_stats=True)

            self.minute_performance = PerformancePeriod(
                # initial cash is your capital base.
                self.capital_base,
                # the cumulative period will be calculated over the
                # entire test.
                self.period_start,
                self.period_end,
                # don't save the transactions for the cumulative
                # period
                keep_transactions=False,
                keep_orders=False,
                # don't serialize positions for cumualtive period
                serialize_positions=False)
            self.perf_periods.append(self.minute_performance)

        # this performance period will span the entire simulation from
        # inception.
        self.cumulative_performance = PerformancePeriod(
            # initial cash is your capital base.
            self.capital_base,
            # the cumulative period will be calculated over the entire test.
            self.period_start,
            self.period_end,
            # don't save the transactions for the cumulative
            # period
            keep_transactions=False,
            keep_orders=False,
            # don't serialize positions for cumualtive period
            serialize_positions=False)
        self.perf_periods.append(self.cumulative_performance)

        # this performance period will span just the current market day
        self.todays_performance = PerformancePeriod(
            # initial cash is your capital base.
            self.capital_base,
            # the daily period will be calculated for the market day
            self.market_open,
            self.market_close,
            keep_transactions=True,
            keep_orders=True,
            serialize_positions=True)
        self.perf_periods.append(self.todays_performance)

        self.saved_dt = self.period_start
        self.returns = pd.Series(index=self.trading_days)
        # one indexed so that we reach 100%
        self.day_count = 0.0
        self.txn_count = 0
        self.event_count = 0