Exemplo n.º 1
0
def _wrap_results(result, dtype):
    """ wrap our results if needed """

    if issubclass(dtype.type, np.datetime64):
        if not isinstance(result, np.ndarray):
            result = lib.Timestamp(result)
        else:
            result = result.view(dtype)
    elif issubclass(dtype.type, np.timedelta64):
        if not isinstance(result, np.ndarray):

            # this is a scalar timedelta result!
            # we have series convert then take the element (scalar)
            # as series will do the right thing in py3 (and deal with numpy 1.6.2
            # bug in that it results dtype of timedelta64[us]
            from pandas import Series

            # coerce float to results
            if is_float(result):
                result = int(result)
            result = Series([result], dtype='timedelta64[ns]')
        else:
            result = result.view(dtype)

    return result
Exemplo n.º 2
0
def _datetime64_fill_wrap(fill_value):
    if isnull(fill_value):
        return tslib.iNaT
    try:
        return lib.Timestamp(fill_value).value
    except:
        # the proper thing to do here would probably be to upcast to object
        # (but numpy 1.6.1 doesn't do this properly)
        return tslib.iNaT
Exemplo n.º 3
0
def _infer_dtype_from_scalar(val):
    """ interpret the dtype from a scalar """

    dtype = np.object_

    # a 1-element ndarray
    if isinstance(val, np.ndarray):
        if val.ndim != 0:
            raise ValueError(
                "invalid ndarray passed to _infer_dtype_from_scalar")

        dtype = val.dtype
        val = val.item()

    elif isinstance(val, string_types):

        # If we create an empty array using a string to infer
        # the dtype, NumPy will only allocate one character per entry
        # so this is kind of bad. Alternately we could use np.repeat
        # instead of np.empty (but then you still don't want things
        # coming out as np.str_!

        dtype = np.object_

    elif isinstance(
            val,
        (np.datetime64, datetime)) and getattr(val, 'tzinfo', None) is None:
        val = lib.Timestamp(val).value
        dtype = np.dtype('M8[ns]')

    elif isinstance(val, (np.timedelta64, timedelta)):
        val = lib.Timedelta(val).value
        dtype = np.dtype('m8[ns]')

    elif is_bool(val):
        dtype = np.bool_

    elif is_integer(val):
        if isinstance(val, np.integer):
            dtype = type(val)
        else:
            dtype = np.int64

    elif is_float(val):
        if isinstance(val, np.floating):
            dtype = type(val)
        else:
            dtype = np.float64

    elif is_complex(val):
        dtype = np.complex_

    return dtype, val
Exemplo n.º 4
0
def _wrap_results(result,dtype):
    """ wrap our results if needed """

    if issubclass(dtype.type, np.datetime64):
        if not isinstance(result, np.ndarray):
            result = lib.Timestamp(result)
        else:
            result = result.view(dtype)
    elif issubclass(dtype.type, np.timedelta64):
        if not isinstance(result, np.ndarray):
            pass
        else:
            result = result.view(dtype)

    return result
Exemplo n.º 5
0
def _wrap_results(result, dtype):
    """ wrap our results if needed """

    if is_datetime64_dtype(dtype):
        if not isinstance(result, np.ndarray):
            result = lib.Timestamp(result)
        else:
            result = result.view(dtype)
    elif is_timedelta64_dtype(dtype):
        if not isinstance(result, np.ndarray):
            result = lib.Timedelta(result)
        else:
            result = result.astype('i8').view(dtype)

    return result
Exemplo n.º 6
0
    def generate(self, where):
        # and condictions
        for c in where:
            op = c.get('op', None)
            value = c['value']
            field = c['field']

            if field == 'index' and self.index_kind == 'datetime64':
                val = lib.Timestamp(value).value
                self.conditions.append('(%s %s %s)' % (field, op, val))
            elif field == 'index' and isinstance(value, datetime):
                value = time.mktime(value.timetuple())
                self.conditions.append('(%s %s %s)' % (field, op, value))
            else:
                self.generate_multiple_conditions(op, value, field)

        if len(self.conditions):
            self.the_condition = '(' + ' & '.join(self.conditions) + ')'
Exemplo n.º 7
0
def _format_datetime64(x, tz=None):
    if isnull(x):
        return 'NaT'

    stamp = lib.Timestamp(x, tz=tz)
    base = stamp.strftime('%Y-%m-%d %H:%M:%S')

    fraction = stamp.microsecond * 1000 + stamp.nanosecond
    digits = 9

    if fraction == 0:
        return base

    while (fraction % 10) == 0:
        fraction /= 10
        digits -= 1

    return base + ('.%%.%id' % digits) % fraction
Exemplo n.º 8
0
def _wrap_results(result, dtype):
    """ wrap our results if needed """

    if is_datetime64_dtype(dtype):
        if not isinstance(result, np.ndarray):
            result = lib.Timestamp(result)
        else:
            result = result.view(dtype)
    elif is_timedelta64_dtype(dtype):
        if not isinstance(result, np.ndarray):

            # raise if we have a timedelta64[ns] which is too large
            if np.fabs(result) > _int64_max:
                raise ValueError("overflow in timedelta operation")

            result = lib.Timedelta(result, unit='ns')
        else:
            result = result.astype('i8').view(dtype)

    return result
Exemplo n.º 9
0
    def conv(r, dtype):
        try:
            if isnull(r):
                pass
            elif dtype == _NS_DTYPE:
                r = lib.Timestamp(r)
            elif dtype == _TD_DTYPE:
                r = _coerce_scalar_to_timedelta_type(r)
            elif dtype == np.bool_:
                # messy. non 0/1 integers do not get converted.
                if is_integer(r) and r not in [0, 1]:
                    return int(r)
                r = bool(r)
            elif dtype.kind == 'f':
                r = float(r)
            elif dtype.kind == 'i':
                r = int(r)
        except:
            pass

        return r
Exemplo n.º 10
0
def _nanmax(values, axis=None, skipna=True):
    mask = isnull(values)

    dtype = values.dtype

    if skipna and not issubclass(dtype.type, (np.integer, np.datetime64)):
        values = values.copy()
        np.putmask(values, mask, -np.inf)

    if issubclass(dtype.type, np.datetime64):
        values = values.view(np.int64)

    # numpy 1.6.1 workaround in Python 3.x
    if (values.dtype == np.object_
            and sys.version_info[0] >= 3):  # pragma: no cover
        import __builtin__

        if values.ndim > 1:
            apply_ax = axis if axis is not None else 0
            result = np.apply_along_axis(__builtin__.max, apply_ax, values)
        else:
            result = __builtin__.max(values)
    else:
        if ((axis is not None and values.shape[axis] == 0)
                or values.size == 0):
            result = values.sum(axis)
            result.fill(np.nan)
        else:
            result = values.max(axis)

    if issubclass(dtype.type, np.datetime64):
        if not isinstance(result, np.ndarray):
            result = lib.Timestamp(result)
        else:
            result = result.view(dtype)

    return _maybe_null_out(result, axis, mask)
Exemplo n.º 11
0
    def convert(values, unit, axis):
        def try_parse(values):
            try:
                return _dt_to_float_ordinal(tools.to_datetime(values))
            except Exception:
                return values

        if isinstance(values, (datetime, pydt.date)):
            return _dt_to_float_ordinal(values)
        elif isinstance(values, np.datetime64):
            return _dt_to_float_ordinal(lib.Timestamp(values))
        elif isinstance(values, pydt.time):
            return dates.date2num(values)
        elif (com.is_integer(values) or com.is_float(values)):
            return values
        elif isinstance(values, compat.string_types):
            return try_parse(values)
        elif isinstance(values, (list, tuple, np.ndarray, Index)):
            if isinstance(values, Index):
                values = values.values
            if not isinstance(values, np.ndarray):
                values = com._asarray_tuplesafe(values)

            if com.is_integer_dtype(values) or com.is_float_dtype(values):
                return values

            try:
                values = tools.to_datetime(values)
                if isinstance(values, Index):
                    values = values.map(_dt_to_float_ordinal)
                else:
                    values = [_dt_to_float_ordinal(x) for x in values]
            except Exception:
                pass

        return values
Exemplo n.º 12
0
def _maybe_promote(dtype, fill_value=np.nan):

    # if we passed an array here, determine the fill value by dtype
    if isinstance(fill_value, np.ndarray):
        if issubclass(fill_value.dtype.type, (np.datetime64, np.timedelta64)):
            fill_value = iNaT
        else:

            # we need to change to object type as our
            # fill_value is of object type
            if fill_value.dtype == np.object_:
                dtype = np.dtype(np.object_)
            fill_value = np.nan

    # returns tuple of (dtype, fill_value)
    if issubclass(dtype.type, (np.datetime64, np.timedelta64)):
        # for now: refuse to upcast datetime64
        # (this is because datetime64 will not implicitly upconvert
        #  to object correctly as of numpy 1.6.1)
        if isnull(fill_value):
            fill_value = iNaT
        else:
            if issubclass(dtype.type, np.datetime64):
                try:
                    fill_value = lib.Timestamp(fill_value).value
                except:
                    # the proper thing to do here would probably be to upcast
                    # to object (but numpy 1.6.1 doesn't do this properly)
                    fill_value = iNaT
            elif issubclass(dtype.type, np.timedelta64):
                try:
                    fill_value = lib.Timedelta(fill_value).value
                except:
                    # as for datetimes, cannot upcast to object
                    fill_value = iNaT
            else:
                fill_value = iNaT
    elif is_datetimetz(dtype):
        if isnull(fill_value):
            fill_value = iNaT
    elif is_float(fill_value):
        if issubclass(dtype.type, np.bool_):
            dtype = np.object_
        elif issubclass(dtype.type, np.integer):
            dtype = np.float64
    elif is_bool(fill_value):
        if not issubclass(dtype.type, np.bool_):
            dtype = np.object_
    elif is_integer(fill_value):
        if issubclass(dtype.type, np.bool_):
            dtype = np.object_
        elif issubclass(dtype.type, np.integer):
            # upcast to prevent overflow
            arr = np.asarray(fill_value)
            if arr != arr.astype(dtype):
                dtype = arr.dtype
    elif is_complex(fill_value):
        if issubclass(dtype.type, np.bool_):
            dtype = np.object_
        elif issubclass(dtype.type, (np.integer, np.floating)):
            dtype = np.complex128
    elif fill_value is None:
        if is_float_dtype(dtype) or is_complex_dtype(dtype):
            fill_value = np.nan
        elif is_integer_dtype(dtype):
            dtype = np.float64
            fill_value = np.nan
        elif is_datetime_or_timedelta_dtype(dtype):
            fill_value = iNaT
        else:
            dtype = np.object_
    else:
        dtype = np.object_

    # in case we have a string that looked like a number
    if is_categorical_dtype(dtype):
        pass
    elif is_datetimetz(dtype):
        pass
    elif issubclass(np.dtype(dtype).type, string_types):
        dtype = np.object_

    return dtype, fill_value
Exemplo n.º 13
0
def _format_datetime64(x, tz=None):
    if isnull(x):
        return 'NaT'

    stamp = lib.Timestamp(x, tz=tz)
    return stamp._repr_base
Exemplo n.º 14
0
 def _gi(self, arg):
     return lib.Timestamp(self.values[arg])
Exemplo n.º 15
0
    def test_datetimeindex_constructor_misc(self):
        arr = ['1/1/2005', '1/2/2005', 'Jn 3, 2005', '2005-01-04']
        self.assertRaises(Exception, DatetimeIndex, arr)

        arr = ['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04']
        idx1 = DatetimeIndex(arr)

        arr = [datetime(2005, 1, 1), '1/2/2005', '1/3/2005', '2005-01-04']
        idx2 = DatetimeIndex(arr)

        arr = [
            lib.Timestamp(datetime(2005, 1, 1)), '1/2/2005', '1/3/2005',
            '2005-01-04'
        ]
        idx3 = DatetimeIndex(arr)

        arr = np.array(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'],
                       dtype='O')
        idx4 = DatetimeIndex(arr)

        arr = to_datetime(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'])
        idx5 = DatetimeIndex(arr)

        arr = to_datetime(
            ['1/1/2005', '1/2/2005', 'Jan 3, 2005', '2005-01-04'])
        idx6 = DatetimeIndex(arr)

        idx7 = DatetimeIndex(['12/05/2007', '25/01/2008'], dayfirst=True)
        idx8 = DatetimeIndex(['2007/05/12', '2008/01/25'],
                             dayfirst=False,
                             yearfirst=True)
        tm.assert_index_equal(idx7, idx8)

        for other in [idx2, idx3, idx4, idx5, idx6]:
            self.assertTrue((idx1.values == other.values).all())

        sdate = datetime(1999, 12, 25)
        edate = datetime(2000, 1, 1)
        idx = DatetimeIndex(start=sdate, freq='1B', periods=20)
        self.assertEqual(len(idx), 20)
        self.assertEqual(idx[0], sdate + 0 * offsets.BDay())
        self.assertEqual(idx.freq, 'B')

        idx = DatetimeIndex(end=edate, freq=('D', 5), periods=20)
        self.assertEqual(len(idx), 20)
        self.assertEqual(idx[-1], edate)
        self.assertEqual(idx.freq, '5D')

        idx1 = DatetimeIndex(start=sdate, end=edate, freq='W-SUN')
        idx2 = DatetimeIndex(start=sdate,
                             end=edate,
                             freq=offsets.Week(weekday=6))
        self.assertEqual(len(idx1), len(idx2))
        self.assertEqual(idx1.offset, idx2.offset)

        idx1 = DatetimeIndex(start=sdate, end=edate, freq='QS')
        idx2 = DatetimeIndex(start=sdate,
                             end=edate,
                             freq=offsets.QuarterBegin(startingMonth=1))
        self.assertEqual(len(idx1), len(idx2))
        self.assertEqual(idx1.offset, idx2.offset)

        idx1 = DatetimeIndex(start=sdate, end=edate, freq='BQ')
        idx2 = DatetimeIndex(start=sdate,
                             end=edate,
                             freq=offsets.BQuarterEnd(startingMonth=12))
        self.assertEqual(len(idx1), len(idx2))
        self.assertEqual(idx1.offset, idx2.offset)
Exemplo n.º 16
0
 def rep_stamp(self):
     return lib.Timestamp(self.values[0])
Exemplo n.º 17
0
def normalize_date(dt):
    if isinstance(dt, np.datetime64):
        dt = lib.Timestamp(dt)
    return dt.replace(hour=0, minute=0, second=0, microsecond=0)