Exemplo n.º 1
0
 def test_catch_infinite_loop(self):
     offset = offsets.DateOffset(minute=5)
     # blow up, don't loop forever
     msg = "Offset <DateOffset: minute=5> did not increment date"
     with pytest.raises(ValueError, match=msg):
         date_range(datetime(2011, 11, 11), datetime(2011, 11, 12),
                    freq=offset)
Exemplo n.º 2
0
 def test_catch_infinite_loop(self):
     offset = offsets.DateOffset(minute=5)
     # blow up, don't loop forever
     pytest.raises(Exception,
                   date_range,
                   datetime(2011, 11, 11),
                   datetime(2011, 11, 12),
                   freq=offset)
Exemplo n.º 3
0
    offsets.BMonthEnd(),
    offsets.BMonthBegin(),
    offsets.CustomBusinessDay(),
    offsets.CustomBusinessDay(calendar=hcal),
    offsets.CustomBusinessMonthBegin(calendar=hcal),
    offsets.CustomBusinessMonthEnd(calendar=hcal),
    offsets.CustomBusinessMonthEnd(calendar=hcal),
]
other_offsets = [
    offsets.YearEnd(),
    offsets.YearBegin(),
    offsets.QuarterEnd(),
    offsets.QuarterBegin(),
    offsets.MonthEnd(),
    offsets.MonthBegin(),
    offsets.DateOffset(months=2, days=2),
    offsets.BusinessDay(),
    offsets.SemiMonthEnd(),
    offsets.SemiMonthBegin(),
]
offset_objs = non_apply + other_offsets


class OnOffset:

    params = offset_objs
    param_names = ["offset"]

    def setup(self, offset):
        self.dates = [
            datetime(2016, m, d) for m in [10, 11, 12]
Exemplo n.º 4
0
    def __getitem__(self, index):

        current_frame_time = pd.to_datetime(
            self.data_list[index].split(" ")[2] + " " +
            self.data_list[index].split(" ")[3])
        #print(current_frame_time)
        time_index = int(current_frame_time.microsecond / 50000)
        start_time = pd.to_datetime(
            str(current_frame_time)[:-7] + "." +
            str(time_index * 50000).zfill(6))
        #print(start_time)
        next_frame_time = start_time + offsets.DateOffset(microseconds=50000)
        #print(next_frame_time)
        # start_time = str(start_time.hour).zfill(2) + ":" + str(start_time.minute).zfill(2) + ":" + str(start_time.second).zfill(2) + "." + str(start_time.microsecond).zfill(6)
        # end_time = str(next_frame_time.hour).zfill(2) + ":" + str(next_frame_time.minute).zfill(2) + ":" + str(next_frame_time.second).zfill(2) + "." + str(next_frame_time.microsecond).zfill(6)

        # print("'start_time', {}, 'end_time', {}, 'len', {}".format(start_time, end_time, len(self.current_csi_dat[start_time:end_time])))
        #print(self.csi_dat[self.data_list[index].split(" ")[0][:-6]])
        #print(self.csi_dat)
        while (len(
                np.array(self.csi_dat[self.data_list[index].split(" ")[0][:-6]]
                         [str(start_time):str(next_frame_time)])) < 5):
            next_frame_time = next_frame_time + offsets.DateOffset(
                microseconds=50000)

        csi_temp = self.csi_dat[self.data_list[index].split(
            " ")[0][:-6]][str(start_time):str(next_frame_time)][:5]
        # print(csi_temp[0])
        # csi_temp = np.array(csi_temp)
        # print(np.concatenate(np.array(csi_temp), axis=2).shape)
        # csi_temp = np.absolute(np.concatenate(np.array(csi_temp)))
        # print(csi_temp.shape)
        # csi_temp = csi_temp.transpose(0 ,2, 1)
        # print(csi_temp.shape)
        # # sample_csi = np.absolute(csi_temp)
        # sample_csi = np.resize(csi_temp, (150, 3, 3))
        #print(np.concatenate(csi_temp, axis=2))
        sample_csi = np.concatenate(csi_temp, axis=2).transpose(2, 0, 1)
        #print(sample_csi.shape)
        #print(self.root_dir)
        #print(self.data_list[index].split(" ")[:1][0])
        #print(type(self.data_list[index].split(" ")[:1][0]))
        sample_SM = sio.loadmat(
            join(
                self.root_dir, "mask_resize", self.data_list[index].split(" ")
                [:1][0] + "_" + str(index + 2)) + ".mat")['masks']
        sample_SM = self.pose_transform(sample_SM)
        #转变float64  torch.size(1,46,82)
        sample_SM = sample_SM.double()
        #print(sample_SM.shape)
        json_dir = join(self.root_dir, 'res', 'alphapose_results.json')
        with open(json_dir) as f:
            # print(f)
            sample = json.load(f)
            JHM = sample[index]["keypoints"]
            JHM = np.array(JHM)
            sample_JHMs = get_heatmap((1280, 720), JHM, (82, 46))[:, :, :-1]
            sample_PAFs = get_vectormap((1280, 720), JHM, (82, 46))
            '''
            x = sample_PAFs.transpose((2,0,1))
            print(x[0])
            cv.namedWindow('input_image', cv.WINDOW_AUTOSIZE)
            mask = 255*x[10]
            mask = mask.astype(np.uint8)
            cv.imshow('input_image', mask)
            cv.waitKey(0)
            cv.destroyAllWindows()
            '''
        sample_PAFs = self.pose_transform(sample_PAFs)
        sample_JHMs = self.pose_transform(sample_JHMs)
        sample_PAFs = sample_PAFs.double()
        sample_JHMs = sample_JHMs.double()
        #print(sample_JHMs.shape)
        #print(sample_PAFs.shape)
        # 转变float64 sample_JHMs torch.size(17,46,82) sample_PAFs torch.size(36,46,82)
        video_name = self.data_list[index].split(" ")[0]
        frame_number = self.data_list[index].split(" ")[1]

        sample = {
            'csi': sample_csi,
            'JHMs': sample_JHMs,
            'SM': sample_SM,
            'video': video_name,
            'PAFs': sample_PAFs,
            'frame': frame_number
        }

        if self.transforms:
            sample = self.transforms(sample)

        return sample
Exemplo n.º 5
0
            
        else:
            print('Values match')

    print('\n')


#---------------------------------------------------------------------------------------------------
# profiling
#---------------------------------------------------------------------------------------------------

from pandas import concat
from pandas import offsets
import timeit
from pandas import to_datetime

df_big = read_csv(r'.\inputs\PD 2022 Wk 1 Input - Input.csv', parse_dates=['Date of Birth'],
              usecols=['id', 'pupil first name', 'pupil last name', 'Date of Birth'])

df_big = concat([df_big]*1000)


# using replace
%timeit -n 1 -r 100 df_big['This Year\'s Birthday'] = df_big['Date of Birth'].apply(lambda x: x.replace(year=datetime.now().year))

# using offsets
%timeit -n 1 -r 100 df_big['This Year\'s Birthday'] = df_big['Date of Birth'] + offsets.DateOffset(year=2022)

# using string formatting
%timeit -n 1 -r 100 df_big['This Year\'s Birthday'] = to_datetime('2022-' + df_big['Date of Birth'].dt.strftime('%m-%d'))