Exemplo n.º 1
0
def get_equities():
    nasdaq100 = pd.read_hdf(data_path / 'data.h5', '1min_trades')

    equities_con = sqlite3.connect(equities_db_path.as_posix())
    equities = read_sqlite('equity_symbol_mappings', equities_con)

    all_tickers = nasdaq100.index.get_level_values('ticker').unique()
    tickers_with_meta = np.sort(
        all_tickers.intersection(pd.Index(equities.symbol)))

    nasdaq_info = (get_nasdaq_symbols().reset_index().rename(
        columns=lambda x: x.lower().replace(' ', '_')).
                   loc[:, ['symbol', 'security_name']].rename(
                       columns={'security_name': 'asset_name'}))
    nasdaq_tickers = pd.DataFrame({
        'symbol': tickers_with_meta
    }).merge(nasdaq_info, how='left')
    nasdaq_sids = (equities.loc[equities.symbol.isin(nasdaq_tickers.symbol),
                                ['symbol', 'sid']])
    nasdaq_tickers = (nasdaq_tickers.merge(
        nasdaq_sids, how='left').reset_index().rename(columns={
            'sid': 'quandl_sid',
            'index': 'sid'
        }))
    nasdaq_tickers.to_hdf('algoseek.h5', 'equities')
Exemplo n.º 2
0
def get_nasdaq_tickers():
    tickers = nasdaq.get_nasdaq_symbols()

    with open('all_stock_tickers.pickle', 'wb') as f:
        pickle.dump(tickers.index.tolist(), f)

    return tickers.index.tolist()
Exemplo n.º 3
0
def get_all_symbols(to_list=True):
    '''Get all NASDAQ sybols'''
    from pandas_datareader.nasdaq_trader import get_nasdaq_symbols
    symbols = get_nasdaq_symbols()
    symbols = symbols.reset_index()
    symbols = symbols['Symbol']
    if to_list:
        return symbols.tolist()
    return symbols
Exemplo n.º 4
0
def get_symbols():
    fpath = os.path.join(get_data_path('stock_data'), 'symbols.qdom')
    if os.path.exists(fpath):
        with open(fpath, 'rb') as f:
            symbols = pickle.load(f)
    else:
        symbols = get_nasdaq_symbols()
        symbols.reset_index(inplace=True)
        with open(fpath, 'wb') as f:
            pickle.dump(symbols, f, pickle.HIGHEST_PROTOCOL)
    return symbols
Exemplo n.º 5
0
	def stock_listings(self):
		'''
		returns the stock listings variable
		'''
		if self._stock_listings == None:
			listings = get_nasdaq_symbols()
			self._stock_listings = OrderedDict()
			for i in range (len(listings)):
				self._stock_listings[listings.iloc[i]['NASDAQ Symbol']] = listings.iloc[i]['Security Name']	
		
		return self._stock_listings
Exemplo n.º 6
0
def getStockQuotes():
    quotes = nt.get_nasdaq_symbols()

    num_processes = multiprocessing.cpu_count() - 1
    chunk_size = int(quotes.shape[0] / num_processes)
    chunks = [
        quotes.ix[quotes.index[i:i + chunk_size]]
        for i in range(0, quotes.shape[0], chunk_size)
    ]

    pool = multiprocessing.Pool(processes=num_processes)
    pool.map(func, chunks)
Exemplo n.º 7
0
def use_current_data():
    global sy
    symbols = get_nasdaq_symbols()

    data = {'stocks': []}
    with open('first_data.json') as test_data:
        json_results = json.load(test_data)

    results = []
    for d in json_results:
        results.append(d)
    # print(json.dumps(json_results['Data Results']))
    # NASDAQ Symbol
    for s in json_results['Data Results']:
        try:
            # Security Name
            symbol = s['symbol'][0]
            name = symbols.loc[symbol]['Security Name']

            data['stocks'].append({
                'name': name,
                'symbol': symbol,
                'info': s['data']
            })
            print('Getting data for ' + str(symbol) + " - " + str(symbols.loc[symbol]['Security Name']))

        except:
            continue
    # print(json.dumps(data))
    for stock in data['stocks']:
        values = []
        dates = []
        for val in stock['info']:
            values.append(val['value'])
        for dat in stock['info']:
            dates.append(dat['date'])
        description = stats.describe(values)
        stock['stats'] = []
        stock['stats'].append({
            'nobs': description[0],
            'min': description[1][0],
            'max': description[1][1],
            'mean': description[2],
            'variance': description[3],
            'skewness': description[4],
            'kurtosis': description[5]
        })
        print()
        print(stock['name'])
        print(description)
        print()
    with open('stock_data.json', 'w') as stock_data:
        json.dump(data, stock_data, indent=4, sort_keys=True, default=str)
Exemplo n.º 8
0
      def init(cls, **kwargs) :
          target = 'filename'
          filename = kwargs.get(target, None)
          target = 'retry_count'
          retry_count = kwargs.get(target,3)
          target = 'timeout'
          timeout = kwargs.get(target,30)

          results = get_nasdaq_symbols(retry_count, timeout)
          if filename is not None :
             results.to_csv(filename)
          ret = cls(results)
          return ret
Exemplo n.º 9
0
 def __init__(self,
              strategy="momentum returns",
              start=datetime.now() - relativedelta(days=2)):
     self.strategies = {
         "momen_returns": self.momen_returns,
         "momen_low_high": self.momen_low_high
     }
     self.markets = get_nasdaq_symbols(
     ).index  #holds all nasdaq traded stocks
     self.portfolio_strategy = self.check_strategy(strategy)
     if self.portfolio_strategy == False:
         raise ValueError("No such strategy exists")
     self.portfolio = None
     self.start = start
     self.purchase_dates = []  #used for testing strategies
Exemplo n.º 10
0
def search_stock_symbols(stock):
    fn = 'symbols.csv'
    if not os.path.exists(fn):
        symbols = get_nasdaq_symbols()
        symbols.to_csv(fn, index='Symbol')
    else:
        symbols = pd.read_csv(fn, index_col='Symbol')
    if stock is None:
        return symbols
    stock = stock.upper()
    hard_search = symbols[symbols['NASDAQ Symbol'] == stock]
    if len(hard_search) == 1:
        return 1, symbols[symbols['NASDAQ Symbol'] ==
                          stock]['Security Name'][stock]
    else:
        found = symbols[symbols['NASDAQ Symbol'].str.contains(stock)]
        if found.empty:
            return 0, None
        else:
            return len(found), found
Exemplo n.º 11
0
 def set_json_from_datareader(self, api_key: str):
     df: DataFrame
     if self.source == "yfinance":
         yf.pdr_override()
         df = pdr.get_data_yahoo(
             self.symbol,
             start=self.start.strftime("%Y-%m-%d"),
             end=self.end.strftime("%Y-%m-%d"),
         )
     elif self.source == "wb":
         df = wb.download(indicator=self.symbol, start=self.start, end=self.end)
     elif self.source == "nasdaq":
         df = get_nasdaq_symbols()  # type:ignore
     elif self.source == "famafrench":
         df = web.DataReader(
             self.symbol,
             self.source,
             start=self.start,
             end=self.end,
             api_key=api_key,
         )[0]
     elif self.source == "tiingo":
         df = web.DataReader(
             self.symbol,
             self.source,
             start=self.start,
             end=self.end,
             api_key=api_key,
         ).reset_index(level="symbol", drop=True)
     else:
         df = web.DataReader(
             self.symbol,
             self.source,
             start=self.start,
             end=self.end,
             api_key=api_key,
         )
     # print(df)
     self.price_json = df.to_json(orient="split")
     # print(self.price_graph)
     return None
Exemplo n.º 12
0
def get_symbols(
    remove_invalid=True,
    remove_not_fetched=True,
    not_fetched_list='drive/My Drive/probabilistic_model/yahoo_not_fetched_sec_code.csv'
):

    # 使用pandas_datareader下载股票列表
    try:
        symbols = get_nasdaq_symbols()
        symbols = symbols.loc[symbols['Test Issue'] == False, ]

    # 直接从纳斯达克网站下载股票列表
    except Exception as e:
        symbols = pd.read_table(
            'ftp://ftp.nasdaqtrader.com/symboldirectory/nasdaqtraded.txt',
            sep='|',
            index_col='Symbol').drop(np.NaN)
        symbols = symbols.loc[symbols['Test Issue'] == 'N', ]
    sec_list = symbols.index.tolist()

    # 删除无效代码
    if remove_invalid:
        original_len = len(sec_list)
        sec_list = [x for x in sec_list if '$' not in x]
        sec_list = [x for x in sec_list if '.' not in x]

    # 删除yahoo无法匹配的代码
    if remove_not_fetched:
        original_len = len(sec_list)
        yahoo_not_fetched_list = []
        try:
            yahoo_not_fetched_list = pd.read_csv(
                not_fetched_list).sec_code.tolist()
        except Exception as e:
            print(e)
        sec_list = [x for x in sec_list if x not in yahoo_not_fetched_list]

    return symbols.loc[sec_list, ]
Exemplo n.º 13
0
def DataReader(name,
               data_source=None,
               start=None,
               end=None,
               retry_count=3,
               pause=0.001,
               session=None,
               access_key=None):
    """
    Imports data from a number of online sources.

    Currently supports Yahoo! Finance, Google Finance, St. Louis FED (FRED),
    Kenneth French's data library, and the SEC's EDGAR Index.

    Parameters
    ----------
    name : str or list of strs
        the name of the dataset. Some data sources (yahoo, google, fred) will
        accept a list of names.
    data_source: {str, None}
        the data source ("yahoo", "yahoo-actions", "yahoo-dividends",
        "google", "fred", "ff", or "edgar-index")
    start : {datetime, None}
        left boundary for range (defaults to 1/1/2010)
    end : {datetime, None}
        right boundary for range (defaults to today)
    retry_count : {int, 3}
        Number of times to retry query request.
    pause : {numeric, 0.001}
        Time, in seconds, to pause between consecutive queries of chunks. If
        single value given for symbol, represents the pause between retries.
    session : Session, default None
            requests.sessions.Session instance to be used
    access_key : (str, None)
        Optional parameter to specify an API key for certain data sources.

    Examples
    ----------

    # Data from Yahoo! Finance
    gs = DataReader("GS", "yahoo")

    # Corporate Actions (Dividend and Split Data)
    # with ex-dates from Yahoo! Finance
    gs = DataReader("GS", "yahoo-actions")

    # Data from Google Finance
    aapl = DataReader("AAPL", "google")

    # Price and volume data from IEX
    tops = DataReader(["GS", "AAPL"], "iex-tops")
    # Top of book executions from IEX
    gs = DataReader("GS", "iex-last")
    # Real-time depth of book data from IEX
    gs = DataReader("GS", "iex-book")

    # Data from FRED
    vix = DataReader("VIXCLS", "fred")

    # Data from Fama/French
    ff = DataReader("F-F_Research_Data_Factors", "famafrench")
    ff = DataReader("F-F_Research_Data_Factors_weekly", "famafrench")
    ff = DataReader("6_Portfolios_2x3", "famafrench")
    ff = DataReader("F-F_ST_Reversal_Factor", "famafrench")

    # Data from EDGAR index
    ed = DataReader("full", "edgar-index")
    ed2 = DataReader("daily", "edgar-index")
    """
    if data_source == "yahoo":
        return YahooDailyReader(symbols=name,
                                start=start,
                                end=end,
                                adjust_price=False,
                                chunksize=25,
                                retry_count=retry_count,
                                pause=pause,
                                session=session).read()

    elif data_source == "yahoo-actions":
        return YahooActionReader(symbols=name,
                                 start=start,
                                 end=end,
                                 retry_count=retry_count,
                                 pause=pause,
                                 session=session).read()

    elif data_source == "yahoo-dividends":
        return YahooDivReader(symbols=name,
                              start=start,
                              end=end,
                              adjust_price=False,
                              chunksize=25,
                              retry_count=retry_count,
                              pause=pause,
                              session=session,
                              interval='d').read()

    elif data_source == "google":
        return GoogleDailyReader(symbols=name,
                                 start=start,
                                 end=end,
                                 chunksize=25,
                                 retry_count=retry_count,
                                 pause=pause,
                                 session=session).read()
    elif data_source == "iex-tops":
        return IEXTops(symbols=name,
                       start=start,
                       end=end,
                       retry_count=retry_count,
                       pause=pause,
                       session=session).read()

    elif data_source == "iex-last":
        return IEXLasts(symbols=name,
                        start=start,
                        end=end,
                        retry_count=retry_count,
                        pause=pause,
                        session=session).read()

    elif data_source == "iex-book":
        return IEXDeep(symbols=name,
                       service="book",
                       start=start,
                       end=end,
                       retry_count=retry_count,
                       pause=pause,
                       session=session).read()

    elif data_source == "enigma":
        return EnigmaReader(datapath=name, api_key=access_key).read()

    elif data_source == "fred":
        return FredReader(symbols=name,
                          start=start,
                          end=end,
                          retry_count=retry_count,
                          pause=pause,
                          session=session).read()

    elif data_source == "famafrench":
        return FamaFrenchReader(symbols=name,
                                start=start,
                                end=end,
                                retry_count=retry_count,
                                pause=pause,
                                session=session).read()

    elif data_source == "oecd":
        return OECDReader(symbols=name,
                          start=start,
                          end=end,
                          retry_count=retry_count,
                          pause=pause,
                          session=session).read()

    elif data_source == "eurostat":
        return EurostatReader(symbols=name,
                              start=start,
                              end=end,
                              retry_count=retry_count,
                              pause=pause,
                              session=session).read()

    elif data_source == "edgar-index":
        return EdgarIndexReader(symbols=name,
                                start=start,
                                end=end,
                                retry_count=retry_count,
                                pause=pause,
                                session=session).read()

    elif data_source == "oanda":
        return get_oanda_currency_historical_rates(start,
                                                   end,
                                                   quote_currency="USD",
                                                   base_currency=name,
                                                   reversed=True,
                                                   session=session)

    elif data_source == 'nasdaq':
        if name != 'symbols':
            raise ValueError("Only the string 'symbols' is supported for "
                             "Nasdaq, not %r" % (name, ))
        return get_nasdaq_symbols(retry_count=retry_count, pause=pause)

    else:
        msg = "data_source=%r is not implemented" % data_source
        raise NotImplementedError(msg)
Exemplo n.º 14
0
def DataReader(name,
               data_source=None,
               start=None,
               end=None,
               retry_count=3,
               pause=0.001,
               session=None,
               access_key=None):
    """
    Imports data from a number of online sources.

    Currently supports Google Finance, St. Louis FED (FRED),
    and Kenneth French's data library, among others.

    Parameters
    ----------
    name : str or list of strs
        the name of the dataset. Some data sources (google, fred) will
        accept a list of names.
    data_source: {str, None}
        the data source ("google", "fred", "ff")
    start : {datetime, None}
        left boundary for range (defaults to 1/1/2010)
    end : {datetime, None}
        right boundary for range (defaults to today)
    retry_count : {int, 3}
        Number of times to retry query request.
    pause : {numeric, 0.001}
        Time, in seconds, to pause between consecutive queries of chunks. If
        single value given for symbol, represents the pause between retries.
    session : Session, default None
        requests.sessions.Session instance to be used
    access_key : (str, None)
        Optional parameter to specify an API key for certain data sources.

    Examples
    ----------
    # Data from Google Finance
    aapl = DataReader("AAPL", "google")

    # Price and volume data from IEX
    tops = DataReader(["GS", "AAPL"], "iex-tops")
    # Top of book executions from IEX
    gs = DataReader("GS", "iex-last")
    # Real-time depth of book data from IEX
    gs = DataReader("GS", "iex-book")

    # Data from FRED
    vix = DataReader("VIXCLS", "fred")

    # Data from Fama/French
    ff = DataReader("F-F_Research_Data_Factors", "famafrench")
    ff = DataReader("F-F_Research_Data_Factors_weekly", "famafrench")
    ff = DataReader("6_Portfolios_2x3", "famafrench")
    ff = DataReader("F-F_ST_Reversal_Factor", "famafrench")
    """
    if data_source == "yahoo":
        raise ImmediateDeprecationError(DEP_ERROR_MSG.format('Yahoo Daily'))
        return YahooDailyReader(symbols=name,
                                start=start,
                                end=end,
                                adjust_price=False,
                                chunksize=25,
                                retry_count=retry_count,
                                pause=pause,
                                session=session).read()

    elif data_source == "yahoo-actions":
        raise ImmediateDeprecationError(DEP_ERROR_MSG.format('Yahoo Actions'))
        return YahooActionReader(symbols=name,
                                 start=start,
                                 end=end,
                                 retry_count=retry_count,
                                 pause=pause,
                                 session=session).read()

    elif data_source == "yahoo-dividends":
        comp = 'Yahoo Dividends'
        raise ImmediateDeprecationError(DEP_ERROR_MSG.format(comp))
        return YahooDivReader(symbols=name,
                              start=start,
                              end=end,
                              adjust_price=False,
                              chunksize=25,
                              retry_count=retry_count,
                              pause=pause,
                              session=session,
                              interval='d').read()

    elif data_source == "google":
        return GoogleDailyReader(symbols=name,
                                 start=start,
                                 end=end,
                                 chunksize=25,
                                 retry_count=retry_count,
                                 pause=pause,
                                 session=session).read()

    elif data_source == "iex":
        return IEXDailyReader(symbols=name,
                              start=start,
                              end=end,
                              chunksize=25,
                              retry_count=retry_count,
                              pause=pause,
                              session=session).read()

    elif data_source == "iex-tops":
        return IEXTops(symbols=name,
                       start=start,
                       end=end,
                       retry_count=retry_count,
                       pause=pause,
                       session=session).read()

    elif data_source == "iex-last":
        return IEXLasts(symbols=name,
                        start=start,
                        end=end,
                        retry_count=retry_count,
                        pause=pause,
                        session=session).read()

    elif data_source == "bankofcanada":
        return BankOfCanadaReader(symbols=name,
                                  start=start,
                                  end=end,
                                  retry_count=retry_count,
                                  pause=pause,
                                  session=session).read()
    elif data_source == "stooq":
        return StooqDailyReader(symbols=name,
                                chunksize=25,
                                retry_count=retry_count,
                                pause=pause,
                                session=session).read()

    elif data_source == "iex-book":
        return IEXDeep(symbols=name,
                       service="book",
                       start=start,
                       end=end,
                       retry_count=retry_count,
                       pause=pause,
                       session=session).read()

    elif data_source == "enigma":
        return EnigmaReader(dataset_id=name, api_key=access_key).read()

    elif data_source == "fred":
        return FredReader(symbols=name,
                          start=start,
                          end=end,
                          retry_count=retry_count,
                          pause=pause,
                          session=session).read()

    elif data_source == "famafrench":
        return FamaFrenchReader(symbols=name,
                                start=start,
                                end=end,
                                retry_count=retry_count,
                                pause=pause,
                                session=session).read()

    elif data_source == "oecd":
        return OECDReader(symbols=name,
                          start=start,
                          end=end,
                          retry_count=retry_count,
                          pause=pause,
                          session=session).read()
    elif data_source == "eurostat":
        return EurostatReader(symbols=name,
                              start=start,
                              end=end,
                              retry_count=retry_count,
                              pause=pause,
                              session=session).read()
    elif data_source == "edgar-index":
        raise ImmediateDeprecationError(DEP_ERROR_MSG.format('EDGAR'))
        return EdgarIndexReader(symbols=name,
                                start=start,
                                end=end,
                                retry_count=retry_count,
                                pause=pause,
                                session=session).read()
    elif data_source == 'nasdaq':
        if name != 'symbols':
            raise ValueError("Only the string 'symbols' is supported for "
                             "Nasdaq, not %r" % (name, ))
        return get_nasdaq_symbols(retry_count=retry_count, pause=pause)

    elif data_source == "quandl":
        return QuandlReader(symbols=name,
                            start=start,
                            end=end,
                            retry_count=retry_count,
                            pause=pause,
                            session=session).read()
    elif data_source == "moex":
        return MoexReader(symbols=name,
                          start=start,
                          end=end,
                          retry_count=retry_count,
                          pause=pause,
                          session=session).read()
    elif data_source == "morningstar":
        return MorningstarDailyReader(symbols=name,
                                      start=start,
                                      end=end,
                                      retry_count=retry_count,
                                      pause=pause,
                                      session=session,
                                      interval="d").read()
    elif data_source == 'robinhood':
        return RobinhoodHistoricalReader(symbols=name,
                                         start=start,
                                         end=end,
                                         retry_count=retry_count,
                                         pause=pause,
                                         session=session).read()
    elif data_source == 'tiingo':
        return TiingoDailyReader(symbols=name,
                                 start=start,
                                 end=end,
                                 retry_count=retry_count,
                                 pause=pause,
                                 session=session,
                                 api_key=access_key).read()
    else:
        msg = "data_source=%r is not implemented" % data_source
        raise NotImplementedError(msg)
Exemplo n.º 15
0
        def Process(self):
                self.Result.setText("Please wait while the Models are being Trained....")
                time.sleep(3)
                START_DATE = '2020-01-01'
                END_DATE = str(datetime.now().strftime('%Y-%m-%d'))

                user_input = self.edit_sname.text()
                user_input = str(user_input).upper()
                try:
                        symbols = get_nasdaq_symbols()
                        stocks = data.DataReader(user_input, 'yahoo', START_DATE, END_DATE)
                except RemoteDataError:
                        self.label_error.setText("No data found, Try Again")
                        QApplication.processEvents()

                stock_data = pd.DataFrame(stocks)
                sym_data = pd.DataFrame(symbols[['Security Name']])

                if os.path.isfile('data.csv'):
                        print('File already exists')
                        os.remove('data.csv')
                        file = pd.DataFrame(stock_data)
                        file.to_csv('data.csv')
                else:
                        file = pd.DataFrame(stock_data)
                        file.to_csv('data.csv')

                symbols_data = sym_data.index.tolist()

                if user_input in symbols_data:
                        self.label_error.setText(f"{(sym_data.loc[user_input])}")
                        QApplication.processEvents()
                else:
                        self.label_error.setText("Stock Name not found!")
                        self.close()
                        QApplication.processEvents()

                df_read = pd.read_csv('data.csv')
                dates = []
                prices = []

                #Get the all data except for the last row
                df = df_read.head(len(df_read)-1)

                df_dates = df.loc[:,'Date']
                df_open = df.loc[:,'Open']

                #create independant data set X as dates
                for date in df_dates:
                        dates.append([int(date.split('-')[2])])

                #create the independant y data set as prices
                for open_price in df_open:
                        prices.append(float(open_price))    
                
                
                self.Result.clear()
                self.Result.setText("Make sure to save the chart window or close it for the final results")
                QApplication.processEvents()
                
                def predict_prices(dates, prices, x):
                        #create 3 svr models
                        svr_lin = SVR(kernel='linear', C=1e3)
                        svr_poly = SVR(kernel='poly', C=1e3, degree=2)
                        svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)

                        #train the models on the dates and prices
                        svr_lin.fit(dates, prices)
                        svr_poly.fit(dates, prices)
                        svr_rbf.fit(dates, prices)

                        #Linear Regeression Model
                        lin_reg =  LinearRegression()
                        #Train the model
                        lin_reg.fit(dates, prices)

                        #plot the models on a graph to see which is best
                        plt.scatter(dates, prices, color='black', label='Data')
                        plt.scatter(dates, svr_rbf.predict(dates), color='red', label='RBF')
                        plt.scatter(dates, svr_lin.predict(dates), color='green', label='Linear')
                        plt.scatter(dates, svr_poly.predict(dates), color='blue', label='Polynomial')
                        plt.scatter(dates, lin_reg.predict(dates), color='orange', label='Linear Reg')
                        plt.xlabel('Days')
                        plt.ylabel('Price')
                        plt.title("Support Vector Regression")
                        plt.legend()
                        plt.show()

                        #return all three models
                        return(f"RBF: {round(svr_rbf.predict(x)[0], 2)} \t\t Linear: {round(svr_lin.predict(x)[0], 2)} \nPolynomial: {round(svr_poly.predict(x)[0], 2)} \t Linear Regression {round(lin_reg.predict(x)[0], 2)}")

                d = float(self.edit_sday.text())
                predicted = predict_prices(dates, prices, [[d]])
                self.Result.clear()
                self.Result.setText(f"{predicted}")
                QApplication.processEvents()
Exemplo n.º 16
0
import math
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import matplotlib.pyplot as plt

from datetime import datetime
from pandas_datareader.nasdaq_trader import get_nasdaq_symbols
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout

today = datetime.today().strftime('%Y-%m-%d')
symbols = get_nasdaq_symbols().index

#get data from single stock
df = pdr.DataReader('AAPL', data_source='yahoo', start='1998-01-01', end=today)

#visualize the closing price history
plt.title('Close Price History')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USE ($)', fontsize=18)
plt.plot(df['Close'])
plt.figure(figsize=(20, 10))
plt.show()

#Create new dataframe with only the "Close" column
data = df.filter(['Close'])
#Convert the df to a numpy array
dataset = data.values
#use 80% of the data to train use the other 20% to test
Exemplo n.º 17
0
def DataReader(
    name,
    data_source=None,
    start=None,
    end=None,
    retry_count=3,
    pause=0.1,
    session=None,
    api_key=None,
):
    """
    Imports data from a number of online sources.

    Currently supports Google Finance, St. Louis FED (FRED),
    and Kenneth French's data library, among others.

    Parameters
    ----------
    name : str or list of strs
        the name of the dataset. Some data sources (IEX, fred) will
        accept a list of names.
    data_source: {str, None}
        the data source ("iex", "fred", "ff")
    start : {datetime, None}
        left boundary for range (defaults to 1/1/2010)
    end : {datetime, None}
        right boundary for range (defaults to today)
    retry_count : {int, 3}
        Number of times to retry query request.
    pause : {numeric, 0.001}
        Time, in seconds, to pause between consecutive queries of chunks. If
        single value given for symbol, represents the pause between retries.
    session : Session, default None
        requests.sessions.Session instance to be used
    api_key : (str, None)
        Optional parameter to specify an API key for certain data sources.

    Examples
    ----------
    # Data from Google Finance
    aapl = DataReader("AAPL", "iex")

    # Price and volume data from IEX
    tops = DataReader(["GS", "AAPL"], "iex-tops")
    # Top of book executions from IEX
    gs = DataReader("GS", "iex-last")
    # Real-time depth of book data from IEX
    gs = DataReader("GS", "iex-book")

    # Data from FRED
    vix = DataReader("VIXCLS", "fred")

    # Data from Fama/French
    ff = DataReader("F-F_Research_Data_Factors", "famafrench")
    ff = DataReader("F-F_Research_Data_Factors_weekly", "famafrench")
    ff = DataReader("6_Portfolios_2x3", "famafrench")
    ff = DataReader("F-F_ST_Reversal_Factor", "famafrench")
    """
    expected_source = [
        "yahoo",
        "iex",
        "iex-tops",
        "iex-last",
        "iex-last",
        "bankofcanada",
        "stooq",
        "iex-book",
        "enigma",
        "fred",
        "famafrench",
        "oecd",
        "eurostat",
        "nasdaq",
        "quandl",
        "moex",
        "robinhood",
        "tiingo",
        "yahoo-actions",
        "yahoo-dividends",
        "av-forex",
        "av-daily",
        "av-daily-adjusted",
        "av-weekly",
        "av-weekly-adjusted",
        "av-monthly",
        "av-monthly-adjusted",
        "av-intraday",
        "econdb",
    ]

    if data_source not in expected_source:
        msg = "data_source=%r is not implemented" % data_source
        raise NotImplementedError(msg)

    if data_source == "yahoo":
        return YahooDailyReader(
            symbols=name,
            start=start,
            end=end,
            adjust_price=False,
            chunksize=25,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()

    elif data_source == "iex":
        return IEXDailyReader(
            symbols=name,
            start=start,
            end=end,
            chunksize=25,
            api_key=api_key,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()

    elif data_source == "iex-tops":
        return IEXTops(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()

    elif data_source == "iex-last":
        return IEXLasts(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()

    elif data_source == "bankofcanada":
        return BankOfCanadaReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()
    elif data_source == "stooq":
        return StooqDailyReader(
            symbols=name,
            chunksize=25,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()

    elif data_source == "iex-book":
        return IEXDeep(
            symbols=name,
            service="book",
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()

    elif data_source == "enigma":
        return EnigmaReader(dataset_id=name, api_key=api_key).read()

    elif data_source == "fred":
        return FredReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()

    elif data_source == "famafrench":
        return FamaFrenchReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()

    elif data_source == "oecd":
        return OECDReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()
    elif data_source == "eurostat":
        return EurostatReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()
    elif data_source == "nasdaq":
        if name != "symbols":
            raise ValueError("Only the string 'symbols' is supported for "
                             "Nasdaq, not %r" % (name, ))
        return get_nasdaq_symbols(retry_count=retry_count, pause=pause)

    elif data_source == "quandl":
        return QuandlReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
            api_key=api_key,
        ).read()
    elif data_source == "moex":
        return MoexReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()
    elif data_source == "robinhood":
        return RobinhoodHistoricalReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()
    elif data_source == "tiingo":
        return TiingoDailyReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
            api_key=api_key,
        ).read()

    elif data_source == "yahoo-actions":
        return YahooActionReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()

    elif data_source == "yahoo-dividends":
        return YahooDivReader(
            symbols=name,
            start=start,
            end=end,
            adjust_price=False,
            chunksize=25,
            retry_count=retry_count,
            pause=pause,
            session=session,
            interval="d",
        ).read()

    elif data_source == "av-forex":
        return AVForexReader(
            symbols=name,
            retry_count=retry_count,
            pause=pause,
            session=session,
            api_key=api_key,
        ).read()

    elif data_source == "av-daily":
        return AVTimeSeriesReader(
            symbols=name,
            function="TIME_SERIES_DAILY",
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
            api_key=api_key,
        ).read()

    elif data_source == "av-daily-adjusted":
        return AVTimeSeriesReader(
            symbols=name,
            function="TIME_SERIES_DAILY_ADJUSTED",
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
            api_key=api_key,
        ).read()

    elif data_source == "av-weekly":
        return AVTimeSeriesReader(
            symbols=name,
            function="TIME_SERIES_WEEKLY",
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
            api_key=api_key,
        ).read()

    elif data_source == "av-weekly-adjusted":
        return AVTimeSeriesReader(
            symbols=name,
            function="TIME_SERIES_WEEKLY_ADJUSTED",
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
            api_key=api_key,
        ).read()

    elif data_source == "av-monthly":
        return AVTimeSeriesReader(
            symbols=name,
            function="TIME_SERIES_MONTHLY",
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
            api_key=api_key,
        ).read()

    elif data_source == "av-monthly-adjusted":
        return AVTimeSeriesReader(
            symbols=name,
            function="TIME_SERIES_MONTHLY_ADJUSTED",
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
            api_key=api_key,
        ).read()

    elif data_source == "av-intraday":
        return AVTimeSeriesReader(
            symbols=name,
            function="TIME_SERIES_INTRADAY",
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
            api_key=api_key,
        ).read()

    elif data_source == "econdb":
        return EcondbReader(
            symbols=name,
            start=start,
            end=end,
            retry_count=retry_count,
            pause=pause,
            session=session,
        ).read()

    else:
        msg = "data_source=%r is not implemented" % data_source
        raise NotImplementedError(msg)
Exemplo n.º 18
0
 def fetch_symbols(cls,symbol):
     symbols = get_nasdaq_symbols()
     tmpsymbols=symbols.iloc[:,[1,4,7,9]]
     symbol_data =tmpsymbols.loc[symbol]
     return symbol_data
Exemplo n.º 19
0
Arquivo: stock.py Projeto: sqyu/Wechat
def get_stock(msg):
    ### To make sure dates are up-to-date (possible change of date)
    global previous_trade_today, today, yesterday
    today = datetime.strptime(
        datetime.now(pytz.timezone('US/Eastern')).strftime("%Y%m%d"), "%Y%m%d")
    yesterday = today - timedelta(1)
    previous_trade_today = last_trade_day(today)
    ### Date assignments end
    msg['Text'] = msg['Text'].upper()
    if my_glob.symbols == {}:  # Load ticker - security name as into dictionary
        my_glob.symbols = get_nasdaq_symbols().ix.obj["Security Name"].to_dict(
        )
    if msg['Text'] in [
            u"換股", u"换股", u"股票", u"换股票", u"換股票"
    ] and (not (my_glob.params.get("params", msg['FromUserName'], "stock") is
                None)):  # If customer wants to change stock
        my_glob.params.set("params", msg['FromUserName'], None, "stock")
        return my_glob.modes_greeting["stock"]
    if my_glob.params.get(
            "params", msg['FromUserName'], "stock"
    ) is None:  # If no pre-selected stock, see if this text is meant for choosing one
        return setstock(msg['Text'], msg['FromUserName'])
    # Ticker okay and already chosen. Then choose date or change stock
    tickers = my_glob.params.get("params", msg['FromUserName'], "stock")
    # Customer will be choosing a new date no matter if he already has chosen a date (another query) or not (first query)
    return_text = ""
    if msg['Text'].upper() in today_names:
        now = datetime.now(pytz.timezone('US/Eastern'))
        if now.hour < 9 or now.hour == 9 and now.min.minute < 30:
            return_text = return_text + u"現在未開市,為您返回上一交易日結果\n"
            search_day = last_trade_day(yesterday)
        else:
            search_day = today
    elif msg['Text'].upper() in yesterday_names:
        search_day = yesterday
    elif msg['Text'].upper().replace(" ", "") in beforeyes_names:
        search_day = yesterday - timedelta(1)
    elif not (
            re.search(u"[年月週周天]$", msg['Text']) is None
    ):  ## If contains 年,月,週,周,天 at the end of the string, then test if it is a length for drawing candle stick. Cannot be a date since a date must ends in 日,號,号, or number.
        k_period = chinese_days(msg['Text'])
        if k_period is None:
            return wrong_date_prompt() + "\n\n" + k_prompt
        elif k_period == -1:
            return u"日期長度有誤," + k_prompt
        else:
            for ticker in tickers:
                send_candlestick(ticker, k_period, today, msg['FromUserName'])
            return u"請輸入日期(紐約時間)查詢其它日期,或其他日期長度繪畫K線圖,或輸入其它股票名或交易代碼,或輸入「換」退出股票模式。"
    # But he will probably want to directly change the stock ticker: if numeric or numeric+chinese -> date, (any alphabet+$ or pure chinese) == (any alphabet+$ or not contain numbers) -> stock; "3M" is okay
    # Placed this step here so that u"今天" would not be treated as a stock
    elif (not re.search('[a-zA-Z$]', msg['Text']) is None) or (re.search(
            '\d', msg['Text']) is None):
        return setstock(msg['Text'], msg['FromUserName'])  ## Stock
    else:  ## Date
        search_day = detect_date(msg['Text'])
    if search_day is None:  # If cannot find date
        return wrong_date_prompt()
    # If everything is in place
    holi = is_holiday(search_day)  # See if is a holiday
    if holi != "":
        return_text = return_text + search_day.strftime("%Y年%-m月%-d日").decode(
            "utf-8"
        ) + u"是一個" + holi + u",已為您改為上一交易日\n\n"  ## SHOULD ONLY APPEAR TO BE THE FIRST IN RETURN_TEXT THOUGH
        search_day = last_trade_day(search_day)
    for ticker in tickers:
        try:
            stock = web.DataReader(ticker, "google", search_day,
                                   search_day).values[0]
        except:
            if search_day == today:
                return_text = return_text + u"今天尚未有" + ticker + u"的股票收盤信息\n"
            else:
                return_text = return_text + u"找不到" + ticker + " (" + my_glob.symbols[
                    ticker] + u") " + search_day.strftime(
                        "%Y年%-m月%-d日").decode("utf-8") + u"的股票信息\n"
            continue
        return_text = return_text + ticker + " (" + my_glob.symbols[
            ticker] + u"):\n" + search_day.strftime("%Y年%-m月%-d日").decode(
                "utf-8") + u"的開市價為$" + str(stock[0]) + u",最高價為$" + str(
                    stock[1]) + u",最低價為$" + str(stock[2]) + u",收市價為$" + str(
                        stock[3]) + u",成交量為" + format_volume(
                            stock[4]) + u"股。\n\n"
    return return_text + u"\n請輸入日期(紐約時間)查詢其它日期,或時間長度(431天/貳拾壹週/叄拾柒個月/半年/兩年)繪畫K線圖,或輸入其它股票名或交易代碼,或輸入「換」退出股票模式。"
Exemplo n.º 20
0
"""

import pandas as pd
pd.core.common.is_list_like = pd.api.types.is_list_like
import pandas_datareader.data as web
from pandas_datareader.nasdaq_trader import get_nasdaq_symbols
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from sklearn.cluster import KMeans

#%% Descargar los datos
inicio = datetime(2018, 3, 12)
final = datetime(2019, 3, 12)
#data = web.YahooDailyReader(symbols='CC', start=inicio, end=final, interval ='d').read()
data = get_nasdaq_symbols()

#%%Visualizar la serie de datos
plt.plot(data['Close'])
plt.show()

#%% Descompener la serie original en subseries de lingutd nv
dat = data['Close']
nv = 5
n_prices = len(dat)
dat_new = np.zeros((n_prices - nv, nv))
for k in np.arange(nv):
    dat_new[:, k] = dat[k:(n_prices - nv) + k]

#%% Normalizar los datos
tmp = dat_new.transpose()
Exemplo n.º 21
0
import pandas_datareader.nasdaq_trader as web

df = web.get_nasdaq_symbols()

print(df.columns)
Exemplo n.º 22
0
def start_data_gather():
    global sy
    symbols = get_nasdaq_symbols()
    print("Number of companies: "+str(len(symbols)))
    print('input the year you would like to start from:')
    start_year = input()
    print('input the number of threads you would like to use:')
    num_threads = input()
    try:
        start_year = int(start_year)
        num_threads = int(num_threads)
    except:
        print('Invalid input exiting program')
        exit(1)
    sy = start_year
    data = {'stocks': []}
    pool = ThreadPool(num_threads)
    results = list(tqdm(pool.imap(get_data, symbols['NASDAQ Symbol']), total=len(symbols['NASDAQ Symbol'])))
    json_results = {'Data Results': []}
    for tr in results:
        json_results['Data Results'].append(tr)
    print("Storing data please wait...")
    with open('first_data.json', 'w') as f:
        json.dump(json_results, f, indent=4, sort_keys=True, default=str)

    # NASDAQ Symbol
    for s in json_results['Data Results']:
        try:
            # Security Name
            symbol = s['symbol'][0]
            name = symbols.loc[symbol]['Security Name']

            data['stocks'].append({
                'name': name,
                'symbol': symbol,
                'info': s['data']
            })
            print('Getting data for ' + str(symbol) + " - " + str(symbols.loc[symbol]['Security Name']))

        except:
            continue
    # print(json.dumps(data))
    for stock in data['stocks']:
        values = []
        dates = []
        for val in stock['info']:
            values.append(val['value'])
        for dat in stock['info']:
            dates.append(dat['date'])
        description = stats.describe(values)
        stock['stats'] = []
        stock['stats'].append({
            'nobs': description[0],
            'min': description[1][0],
            'max': description[1][1],
            'mean': description[2],
            'variance': description[3],
            'skewness': description[4],
            'kurtosis': description[5]
        })
        print()
        print(stock['name'])
        print(description)
        print()
    print("Storing data please wait...")
    with open('stock_data.json', 'w') as stock_data:
        json.dump(data, stock_data, indent=4, sort_keys=True, default=str)
Exemplo n.º 23
0
import requests
import json
import requests_cache
import time
import logging
import pandas as pd
import urllib.request
from datetime import date, timedelta, datetime
from pyquery import PyQuery
from pandas_datareader.nasdaq_trader import get_nasdaq_symbols
from .holding import Holding
from financescraper import scraper, conversions

symbols = get_nasdaq_symbols()
expire_after = timedelta(days=5)
requests_cache.install_cache('cache_data', expire_after=expire_after)

yahoo_scraper = scraper.YahooScraper()
usd_converter = conversions.CurrencyConverter('USD')


# Scrape name and holdings if any for a given ticker
def scrape_ticker(ticker, use_yahoo):
    holdings = []
    data = get_data(ticker, use_yahoo)

    # invalid ticker
    if data is None:
        return holdings

    if _is_etf(data):
Exemplo n.º 24
0
# print(obj3+obj4)
#
# obj4.index.name = "states"
# obj4.name = "population"
# print(obj4)

import pandas_datareader.data as web
import datetime

import pandas_datareader.nasdaq_trader as nasdaq
start = datetime.datetime(2020, 1, 1)
end = datetime.datetime(2020, 4, 17)

# google = web.DataReader("GOOGL", "yahoo", start, end)
# print(google.head())

syms = nasdaq.get_nasdaq_symbols()

print(type(syms))

count = 0
print("****************************************")
print("****************************************")
print("****************************************")
for index, row in syms.iterrows():
    count += 1
    if count > 500:
        break
    print(index)
    print('____________________________')