Exemplo n.º 1
0
    def test_groupby_multiple_columns_sum(self):
        df = pdw.DataFrame(
            {
                'col1': np.array([1, 1, 2, 3, 3], dtype=np.int32),
                'col2': np.array([3, 4, 5, 5, 6], dtype=np.int64),
                'col3': np.array([5., 6., 7., 7., 7.], dtype=np.float32)
            },
            pdw.MultiIndex([
                np.array([1, 2, 3], dtype=np.int32),
                np.array([5., 6., 7.], dtype=np.float32)
            ], [
                np.array([0, 0, 1, 2, 2], dtype=np.int64),
                np.array([0, 1, 2, 2, 2], dtype=np.int64)
            ], ['i32', 'f32']))

        result = df.groupby(['col1', 'col3']).sum()

        expected_result = pdw.DataFrame(
            {'col2': np.array([3, 4, 5, 11], dtype=np.int64)},
            pdw.MultiIndex([
                np.array([1, 2, 3], dtype=np.int32),
                np.array([5., 6., 7.], dtype=np.float32)
            ], [
                np.array([0, 0, 1, 2], dtype=np.int64),
                np.array([0, 1, 2, 2], dtype=np.int64)
            ], ['col1', 'col3']))

        # TODO: test equal 1d index method (both rangeindex and index should work)
        # assume correct index values but in different order; just check the values
        levels_result = [
            np.sort(level.evaluate()) for level in result.index.levels
        ]
        labels_result = [
            np.sort(label.evaluate()) for label in result.index.labels
        ]
        levels_expected = [
            np.sort(level) for level in expected_result.index.levels
        ]
        labels_expected = [
            np.sort(label) for label in expected_result.index.labels
        ]
        np.testing.assert_array_equal(result.index.names,
                                      expected_result.index.names)
        for i in range(2):
            np.testing.assert_array_equal(levels_result[i], levels_expected[i])
            np.testing.assert_array_equal(labels_result[i], labels_expected[i])
        # assume correct values but in different order; just check the values
        np.testing.assert_array_equal(
            np.sort(expected_result['col2'].evaluate().data),
            np.sort(result['col2'].evaluate().data))
Exemplo n.º 2
0
    def test_join_multiindex(self):
        df1 = pdw.DataFrame(
            {'col1': np.arange(8)},
            pdw.MultiIndex.from_product(
                [np.array([1, 2]),
                 np.array([3, 4]),
                 np.array([5, 6])], ['i1', 'i2', 'i3']))
        df2 = pdw.DataFrame(
            {'col2': np.arange(12)},
            pdw.MultiIndex.from_product(
                [np.array([1, 2, 3]),
                 np.array([3, 5]),
                 np.array([5, 6])], ['i1', 'i2', 'i3']))

        result = df1.merge(df2)

        expected_result = pdw.DataFrame(
            {
                'col1': np.array([0, 1, 4, 5]),
                'col2': np.array([0, 1, 4, 5])
            },
            pdw.MultiIndex(
                [np.array([1, 2]),
                 np.array([3, 4]),
                 np.array([5, 6])], [
                     np.array([0, 0, 1, 1]),
                     np.array([0, 0, 0, 0]),
                     np.array([0, 1, 0, 1])
                 ], ['i1', 'i2', 'i3']))

        test_equal_multiindex(expected_result.index, result.index)
        test_equal_series(expected_result['col1'], result['col1'])
        test_equal_series(expected_result['col2'], result['col2'])
    def test_from_arrays(self):
        arrays = [np.array([1, 1, 2, 2]), np.array([3, 4, 3, 4])]
        names = ['a', 'b']

        result = pdw.MultiIndex.from_arrays(arrays, names)

        expected_result = pdw.MultiIndex(
            [np.array([1, 2]), np.array([3, 4])],
            [np.array([0, 0, 1, 1]),
             np.array([0, 1, 0, 1])], ['a', 'b'])

        test_equal_multiindex(expected_result, result)
    def test_from_product_raw(self):
        levels = [np.array([1, 2]), np.array([3, 4])]
        names = ['a', 'b']

        result = pdw.MultiIndex.from_product(levels, names)

        expected_result = pdw.MultiIndex(
            [np.array([1, 2]), np.array([3, 4])],
            [np.array([0, 0, 1, 1]),
             np.array([0, 1, 0, 1])], ['a', 'b'])

        test_equal_multiindex(expected_result, result)
Exemplo n.º 5
0
    def test_getitem_series(self):
        data = {'col1': np.array([1, 2]), 'col2': np.array([5., 6.])}
        index = pdw.MultiIndex(
            [np.array([1, 2]), np.array([3, 4])],
            [np.array([0, 0]), np.array([0, 1])], ['a', 'b'])
        expected_result = pdw.DataFrame(data, index)

        result = self.df[self.df['col1'] < 3]

        np.testing.assert_array_equal(
            evaluate_if_necessary(expected_result['col1']),
            evaluate_if_necessary(result['col1']))
        np.testing.assert_array_equal(
            evaluate_if_necessary(expected_result['col2']),
            evaluate_if_necessary(result['col2']))

        test_equal_multiindex(expected_result.index, result.index)
    def test_from_product(self):
        levels = [
            LazyResult(np.array([1, 2]), WeldLong(), 1),
            LazyResult(np.array([3, 4]), WeldLong(), 1)
        ]
        names = ['a', 'b']

        result = pdw.MultiIndex.from_product(levels, names)

        expected_result = pdw.MultiIndex([
            LazyResult(np.array([1, 2]), WeldLong(), 1),
            LazyResult(np.array([3, 4]), WeldLong(), 1)
        ], [
            LazyResult(np.array([0, 0, 1, 1]), WeldLong(), 1),
            LazyResult(np.array([0, 1, 0, 1]), WeldLong(), 1)
        ], ['a', 'b'])

        test_equal_multiindex(expected_result, result)
    def test_getitem_filter(self):
        levels = [
            LazyResult(np.array([1, 2]), WeldLong(), 1),
            LazyResult(np.array([3, 4]), WeldLong(), 1)
        ]
        names = ['a', 'b']

        to_filter = LazyResult(
            np.array([True, False, True, False], dtype=np.bool),
            numpy_to_weld_type(np.dtype(np.bool)), 1)
        result = pdw.MultiIndex.from_product(levels, names)[to_filter]

        expected_result = pdw.MultiIndex([
            LazyResult(np.array([1, 2]), WeldLong(), 1),
            LazyResult(np.array([3, 4]), WeldLong(), 1)
        ], [
            LazyResult(np.array([0, 1]), WeldLong(), 1),
            LazyResult(np.array([0, 0]), WeldLong(), 1)
        ], ['a', 'b'])

        test_equal_multiindex(expected_result, result)
Exemplo n.º 8
0
    def test_groupby_single_column_sum(self):
        df = pdw.DataFrame(
            {
                'col1': np.array([1, 1, 2, 3, 3], dtype=np.int32),
                'col2': np.array([3, 4, 5, 5, 6], dtype=np.int64),
                'col3': np.array([5., 6., 7., 7., 7.], dtype=np.float32)
            },
            pdw.MultiIndex([
                np.array([1, 2, 3], dtype=np.int32),
                np.array([5., 6., 7.], dtype=np.float32)
            ], [
                np.array([0, 0, 1, 2, 2], dtype=np.int64),
                np.array([0, 1, 2, 2, 2], dtype=np.int64)
            ], ['i32', 'f32']))

        result = df.groupby('col1').sum()

        expected_result = pdw.DataFrame(
            {
                'col2': np.array([7, 5, 11], dtype=np.int64),
                'col3': np.array([11., 7., 14.], dtype=np.float32)
            },
            pdw.Index(np.array([1, 2, 3], dtype=np.int32), np.dtype('int32'),
                      'col1'))

        # TODO: test equal 1d index method (both rangeindex and index should work)
        np.testing.assert_array_equal(
            np.sort(evaluate_if_necessary(expected_result.index)),
            np.sort(evaluate_if_necessary(result.index)))
        # assume correct values but in different order; just check the values
        np.testing.assert_array_equal(
            np.sort(expected_result['col2'].evaluate().data),
            np.sort(result['col2'].evaluate().data))
        np.testing.assert_array_equal(
            np.sort(expected_result['col3'].evaluate().data),
            np.sort(result['col3'].evaluate().data))