import math from tslearn.clustering import TimeSeriesKMeans from sklearn.metrics import mean_absolute_error from sklearn.cluster import KMeans from paper_class import paper papers = {} with open("datasets_inUse/paper_ids.txt", "r", encoding="utf8") as file: pid = 0 for i in file.readlines(): l = i.split() # making the entire title sentence title = ' '.join(l[1:len(l) - 1]) # paper id pid is increasing values of 1 with eveyr loop papers[l[0]] = paper(pid, l[0], title, l[-1], "", "") pid += 1 with open("datasets_inUse/acl-metadata.txt", "r", encoding="utf8") as file: pid = 0 flag = False ID = 0 for i in file.readlines(): #print(i) l = i.split('=') if (flag): if (l[0] == "author "): l[1] = l[1].strip() auth = l[1][1:-1] #print(auth) papers[ID].author = auth
from paper_class import paper import copy import nimfa paper_id={} id_paper={} inverse_id={} with open("datasets_inUse/paper_ids.txt","r", encoding="utf8") as file: pid=0 for i in file.readlines(): l=i.split() # making the entire title sentence title=' '.join(l[1:len(l)-1]) # paper id pid is increasing values of 1 with eveyr loop obj=paper(pid, l[0], title, l[-1],[],"") paper_id[l[0]]=obj id_paper[pid]=obj inverse_id[pid]=l[0] pid+=1 #%% with open("datasets_inUse/acl-metadata.txt","r", encoding="utf8") as file: pid=0 paper="" for i in file.readlines(): if(i!='\n'): l=i.split('=') if(l[0]=="id "): l[1]=l[1].strip() paper=l[1][1:-1] if(l[0]=="author "):