Exemplo n.º 1
0
    def __init__(self, exp_path, agents=None):
        """
    Constructor
    """
        self.params = parameters.Params()
        self.params.load(os.path.join(exp_path, '_params.json'))
        self.exp_path = exp_path
        self.agents = agents
        self.bd_extractor = BehaviorDescriptor(self.params)
        self.pca = None

        self.traj_to_obs = registered_envs[self.params.env_name]['traj_to_obs']
        self.grid_params = registered_envs[self.params.env_name]['grid']

        if not os.path.exists(os.path.join(self.exp_path, 'analyzed_data')):
            os.mkdir(os.path.join(self.exp_path, 'analyzed_data'))

        # GT_BD is the ground truth bd that is used to calculate the CVG
        if self.params.env_name == 'Dummy':
            self.gt_bd_extractor = dummy_gt_bd
            self.goals = 0
        elif self.params.env_name == 'Walker2D':
            self.gt_bd_extractor = dummy_gt_bd
            self.goals = 0
        elif self.params.env_name == 'CollectBall':
            self.gt_bd_extractor = collect_ball_gt_bd
            self.goals = 0
        elif self.params.env_name == 'NDofArm':
            self.gt_bd_extractor = red_arm_gt_bd
            self.goals = 3
        elif self.params.env_name == 'AntMaze':
            self.gt_bd_extractor = ant_maze_gt_bd
            self.goals = 2
        elif self.params.env_name == 'HardMaze':
            self.gt_bd_extractor = hard_maze_gt_bd
            self.goals = 2
        elif self.params.env_name == 'Curling':
            self.gt_bd_extractor = curling_gt_bd
            self.goals = 0
        else:
            print("No GT BD given for: {}".format(self.params.env_name))
            raise ValueError
Exemplo n.º 2
0
    def __init__(self, exp_path, multip=False, agents=None):
        """
    Constructor
    """
        self.params = parameters.Params()
        self.params.load(os.path.join(exp_path, '_params.json'))
        self.exp_path = exp_path
        self.agents = agents
        self.bd_extractor = BehaviorDescriptor(self.params)

        self.traj_to_obs = registered_envs[self.params.env_name]['traj_to_obs']
        self.mp = multip
        if self.mp:
            global main_pool
            main_pool = mp.Pool(initializer=self.init_process,
                                processes=int(os.cpu_count()))
        else:
            self.evaluator = Evaluator(self.params)

        if not os.path.exists(os.path.join(self.exp_path, 'analyzed_data')):
            os.mkdir(os.path.join(self.exp_path, 'analyzed_data'))
Exemplo n.º 3
0
 def setupModelSpecificPopsizes(self, inputData, agePopSizes):
     import model
     import derived
     import parameters
     # gaussianise stunting in *data*
     ages = self.keyList['ages']
     for iAge in range(len(ages)):
         ageName = ages[iAge]
         probStunting = self.sumStuntedComponents(
             inputData.stuntingDistribution[ageName])
         inputData.stuntingDistribution[ageName] = self.restratify(
             probStunting)
     listOfAgeCompartments = self.makeAgeCompartments(
         agePopSizes, inputData)
     pregnantWomen = self.makePregnantWomen(inputData)
     model = model.Model(pregnantWomen, listOfAgeCompartments, self.keyList)
     derived = derived.Derived(inputData, model, self.keyList)
     model.setDerived(derived)
     parameters = parameters.Params(inputData, derived, self.keyList)
     model.setParams(parameters)
     model.updateMortalityRate()
     return model, derived, parameters
#     file.writerow(['x', 'y'])
#     file.writerow([1.0, 2.0])
#     file.close()

# out = csv.writer(open('natural_shape_points.csv', 'w'), delimiter=',', quoting=csv.QUOTE_ALL)
# out.writerow(['x','y'])
# out.writerow([1.0,2.0])
# out.close()
# writer = csv.DictWriter(out, fieldnames=fieldnames)

# writer.writeheader()
# writer.writerow({'first_name': 'Baked', 'last_name': 'Beans'})
# writer.writerow({'first_name': 'Lovely', 'last_name': 'Spam'})
# writer.writerow({'first_name': 'Wonderful', 'last_name': 'Spam'})

params = parameters.Params()
''' Shape Definition '''

pointsNaturalShape = []

circle_sections = 50

for i in range(0, circle_sections):
    theta = (np.pi / (1.7 * circle_sections)) * i
    # pointsNaturalShape.append([params.r_base * (1.0 - np.cos(np.pi / 1.7 - theta)), params.r_base * np.sin(np.pi / 1.7 - theta)])
    pointsNaturalShape.append(
        [params.r_base * (1.0 - np.cos(theta)), params.r_base * np.sin(theta)])

## Transition region

pointsNaturalShape.append([params.r_base + 1.4, params.r_base - 0.3])
Exemplo n.º 5
0
                  ....     ....
       linearly interpolate between times

       Note: this is different from Wang et al (2020), which assumes
             piecewise constant values for R_zero

"""
r_zero_array = np.zeros([6, 2])
r_zero_array[0, :] = [0.0, 3.0]  # t=0 days    R_zero = 3.0
r_zero_array[1, :] = [20.0, 2.6]  # t = 60 days R_zero = 2.6
r_zero_array[2, :] = [70.0, 1.9]  # t = 70 days R_zero = 1.9
r_zero_array[3, :] = [84.0, 1.0]  # t = 84 days R_zero = 1.0
r_zero_array[4, :] = [90.0, .50]  # t = 90 days R_zero = .50
r_zero_array[5, :] = [1000, .50]  # t = 1000 days R_zero =.50

params = parameters.Params(c, N, sigma, gamma, r_zero_array)

t_0 = 0
tspan = np.linspace(t_0, 181, 180)  # time in days

y_init = np.zeros(4)
y_init[0] = S_0
y_init[1] = E_0
y_init[2] = I_0
y_init[3] = R_0


def seir_with_params(t, y):
    return seir_function(t, y, params)

Exemplo n.º 6
0
    Y_tout_snr, snr_diff_dec = dt.gen_signaux_snr(objet_principal, source_gal,
                                                  source_halo, bruit_pose, SNR,
                                                  simu)
    Y = Y_tout_snr[:, :, :, :, 0]

    Y_src = Y.mean(axis=3)

    empty_cube = snr_diff_dec * st.norm.rvs(loc=0, scale=1, size=(S, S, W))

    # to change if the object center is not the subcube center :
    centre = np.array([int(S / 2), int(S / 2)])

    # creating the "parameter" object :
    params = parameters.Params(Y,
                               centre,
                               pfa_bright=pfa_bright,
                               pfa_faint=pfa_faint,
                               taille_f=11,
                               FWHM=FWHM)

    #%%

    # Actual detection
    Xe1, ve1, vem1, Xi, vi = sdp.detection_strategy(params)

    #%% isolating some regions for averaging spectra
    reg_init = ma.masked_array(
        Y_src, np.tile((Xi == 0)[:, :, np.newaxis], (1, 1, Y_src.shape[2])))
    sp_init = ma.mean(ma.mean(reg_init, axis=0), axis=0)

    reg_ext = ma.masked_array(
        Y_src,
Exemplo n.º 7
0
import threading

import generator
import parameters
import controller
import webGui
import os
threadLock = threading.Lock()
threads = []

Parameters = parameters.Params(50, 44100, 10 * 4410, 500)

controller.initialize(Parameters, threadLock)
webGui.initialize(Parameters)
generatorThread = generator.Generator(Parameters, threadLock)
controllerThread = controller.Controller(Parameters, threadLock)

generatorThread.start()
controllerThread.start()
webGui.run()

# Add threads to thread list
threads.append(generatorThread)
threads.append(controllerThread)

# Wait for all threads to complete
for t in threads:
    t.join()

generatorThread.stop()
print('Generator and controller stoped')